Home - [Neutron Classes](https://neutronclasses.com/)

For More Study Material

ROTATIONAL MOTION

1. KINEMATICS OF SYSTEM OF PARTICLES

1.1 System of particles can move in different ways as observed by us in daily life. To understand that we need to understand few new parameters. **1.1** System of particles can move
by us in daily life. To understa
few new parameters.
(a) Angular Displacement
Consider a particle moves from

Consider a particle moves from A to B in the following figures.

Angle is the angular displacement of particle about O. Units \rightarrow radian **(b)**

Angle is the angular displacement of particle about O.

Units → radian
 (b) Angular Velocity

The rate of change of angular displacement is called as

angular velocity.

Units \rightarrow Rad/s

It is a vector quantity whose direction is given by right hand thumb rule.

According to right hand thumb rule, if we curl the fingers of right hand along with the body, then right hand thumb gives us the direction of angular velocity.

It is always along the axis of the motion. **EXECTED**
It is always along the axis of the
(c) Angular Acceleration
Angular acceleration of an objec

Angular acceleration of an object about any point is rate of change of angular velocity about that point.

Units \rightarrow Rad/s²

It is a vector quantity. If α is constant then similarly to equation of motion (i.e.) nits \rightarrow Rad/s²
is a vector quantity. If α is constant then s
puation of motion (i.e.)
 $\alpha \theta$, t are related $\omega = \omega_0 + \alpha t$
 $\theta = \omega_0 t + \frac{1}{2} \alpha t^2$
 $\frac{2}{f} - \omega_0^2 = 2\alpha\theta$
arious types of motion

 ω , α θ , t are related $\omega = \omega_0 + \alpha t$

$$
\Delta\theta = \omega_0 t + \frac{1}{2}\alpha t^2
$$

$$
\omega_1^2 - \omega_0^2 = 2\alpha \theta
$$

1.2 Various types of motion
(a) Translational Motion

$$
\omega_{\rm f}^2-\omega_{\rm 0}^2=2\alpha\theta
$$

 $ω_f² - ω₀² = 2αθ$
 1.2 Various types of motion

(a) Translational Motion

System is said to be in translational motion, if all the particles lying in the system have same linear velocity.

Example

Motion of a rod as shown.

Example

Motion of body of car on a straight rod.

In both the above examples, velocity of all the particles is same as they all have equal displacements in equal intervals of time. In both the above examples,

same as they all have equal diversion of time.
 (b) Rotational Motion

A system is said to be in pure

A system is said to be in pure rotational motion, when all the points lying on the system are in circular motion about one common fixed axis.

In pure rotational motion.

Angular velocity of all the points is same about the fixed $\|\cdot\|$ axis. In pure rotational motion.

Angular velocity of all the poir

axis.
 (c) Rotational + Translational

A system is said to be in rotation

A system is said to be in rotational + translational motion, when the particle is rotating with some angular velocity about a movable axis.

For example :

 $v =$ velocity of axis.

ω = Angular velocity of system about O.

1.3 Inter Relationship between kinematics variable

In general if a body is rotating about any axis (fixed or movable), with angular velocity ω and angular acceleration α then velocity of any point p with respect to axis is $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

$$
\vec{v} = \vec{\omega} \times \vec{r}
$$
 and $\vec{a} = \vec{\alpha} \times \vec{r} - \omega^2 \vec{r}$.

i.e.,

$$
\vec{v}_n = \vec{\omega} \times \vec{r}
$$

$$
\vec{a} = \vec{\alpha} \times \vec{r} - \omega^2 \vec{r}
$$

Example

$$
v_B = \omega L
$$
 and $v_A = \frac{\omega L}{2}$, with directions as shown in figure.

Now in rotational + translational motion, we just superimpose velocity and acceleration of axis on the velocity and acceleration of any point about the axis. (i.e.)

Inter-relation between v of axis and ω or a of axis and α depends on certain constraints.

General we deal with the case of no slipping or pure rolling.

The constraint in the above case is that velocity of points of contact should be equal for both rolling body and playfrom. $\frac{v_r}{v_r}$

constraint in the above case is that velocity of points

constraint in the above case is that velocity of points

from.
 $v - r\omega = v_p$

atform is fixed then
 $0 \Rightarrow \frac{v = r\omega}{\omega}$

ifferentiating the above term we g The constraint in the above case is that velocity of points

of contact should be equal for both rolling body and
 $(v_0)v - r\omega = v_p$

If platform is fixed then
 $v_p = 0 \Rightarrow [\overline{v} = r\omega]$

An differentiating the above term we get

 $(i.e.) v - r\omega = v_p$

If platform is fixed then

$$
v_p = 0 \implies v = r\omega
$$

An differentiating the above term we get

$$
\frac{dv}{dt} = \frac{r d\omega}{dt}.
$$

Now if $\frac{dv}{dx} = a$ $\frac{dv}{dt} = a$

$$
\frac{d\omega}{dt} = \alpha \qquad \qquad \omega \leq \frac{1}{\alpha} \qquad \qquad \omega
$$

Remember if acceleration is assumed opposite to velocity

a $\sqrt{ }$

then $a = -\frac{dv}{dt}$ instead of $a = \frac{dv}{dt}$. $=\frac{dv}{dt}$. calcu

v a²

Similary : If α and ω are in opposite direction the $\alpha = -\frac{d}{\alpha}$
Accordingly the constraints can change depending up
the assumptions.
2. ROTATIONAL DYNAMICS the assumptions. Accordingly the constraints can change depending upon
the assumptions.
2. ROTATIONAL DYNAMICS
2.1 Torque

Similar to force, the cause of rotational motion is a physical quantity called a torque.

Torque incorporates the following factors.

- Amount of force.
- Point of application of force.
- Direction of application of force. Combining all of the above.

Torque $\tau = r f \sin \theta$ about a point O.

Where $r =$ distance from the point \overline{O} to point of application of force.

f= force

Torque about O.

A is point of application of force.

Magnitude of torque can also be rewritten as

 f_{\perp} = component of force in the direction \perp to \vec{r} .

 r_{\perp} = component of force in the direction \perp to \vec{f} .

Direction :

Direction of torque is given by right hand thumb rule. If we curl the fingers of right hand from first vector (\vec{r}) to second

 $-\frac{1}{\alpha}$
 $\frac{d\alpha}{dt}$
 $v_p = 0 \Rightarrow \frac{v_{\perp} = \text{roo}}{dt}$

An differentiating the above term we get
 $\frac{dv}{dt} = \frac{r d\omega}{dt}$.

Now if $\frac{dv}{dt} = a$
 $\frac{d\omega}{dt} = \alpha$
 $\frac{d\omega}{dt}$ vector (\widehat{f}) then right hand thumb gives us direction of their cross product. Torque about O.

A is point of application of force.

Magnitude of torque can also be rewritten as
 $\tau = rf_{\perp}$ or $\tau = r_{\perp}f$ where
 f_{\perp} = component of force in the direction \perp to \vec{r} .
 r_{\perp} = component In $\tau = rf_{\perp}$ or $\tau = r_{\perp}f$ where
 $r_{\perp} =$ component of force in the direction \perp to \vec{r} .
 $r_{\perp} =$ component of force in the direction \perp to \vec{r} .
 IDENET EVALUATE EVALUATE CONCION EXECT (T) to secon f_1 = component of force in the direction \perp to \vec{r} .

Direction :
 r_1 = component of force in the direction \perp to \vec{r} .

Direction of torque is given by right hand thumb rule. If we

curl the fingers o

- Torque is always defined about a point or about an axis.
- dv \rightarrow When there are multiple forces, the net torque needs to be

 $\frac{d\omega}{dt}$ All torque about same point/axis. dt $\left|$

- equilibrium.
- If equal and opp. force act to produce same torque then they constitutes a couple.
- For calculating torque, it is very important to find the eff. point of application of force.
- $Mg \rightarrow$ Acts at com/centre of gravity.

 $N \rightarrow$ Point of application depends upon situation to situation.

2.2 Newtwon's Laws
 $\sum \tau = \ln \frac{1}{\tau}$

- $I =$ moment of Inertia
- $\rightarrow \alpha$ = Angular Acceleration. $Στ = Iα.$

→ I = moment of Inertia

→ α = Angular Acceleration.
 2.3 Moment of Inertia

- \rightarrow Gives the measure of mass distribution about on axis.
- \rightarrow $I = \sum m_i r_i^2$
	- $\mathbf{r}_{i} = \perp$ distance of the ith mass from axis.
- Always defined about an axis.

- SI units \rightarrow kgm²
- \rightarrow Gives the measure of rotational inertia and is equavalent to mass. \rightarrow SI units \rightarrow kgm²
 \rightarrow Gives the measure of rotational inertia and is equaval

mass.

(a) Moment of Inertia of a discreet particle system :
-

$$
I = M_1 r_1^2 + M_2 r_2^2 + M_3 r_3^2
$$

integration :

$$
f_{\text{axis}} = \int r^2 dm
$$

3.1 Moment of inertia of Continuous Bodies

When the distribution of mass of a system of particle is continuous, the discrete sum $I = \sum m_i r_i^2$ is replaced by an integral. The moment of inertia of the whole body takes the form

Keep in mind that here the quantity r is the perpendicular distance to an axis, not the distance to an origin. To evaluate this integral, we must express m in terms of r.

Comparing the expression of rotational kinetic energy with $1/2$ mv², we can say that the role of moment of inertia (I) is same in rotational motion as that of mass in linear motion. It is a measure of the resistance offered by a body to a change in its rotational motion.

3.2 Moment of Inertia of some important bodies

1. Circular Ring

Axis passing through the centre and perpendicular to the plane of ring.

 $I = MR^2$

 $I = MR^2$

About its geometrical axis :

 $I = 2/5$ MR²

(b) Hollow Sphere
Axis passing through the centre
 $I = 2/3 \text{ MR}^2$
5. Thin Rod of length *l* :
(a) Axis passing through mid $I = 2/3$ MR²
 5. Thin Rod of length *l***:**

(a) Axis passing through mid point and perpendicular to the length :

12

(b) Axis passing through an end and perpendicular to the rod: rod:

3.3 Theorems on Moment of Inertia

1. Parallel Axis Theorem : Let I_{cm} be the moment of inertia of a body about an axis through its centre of mass and Let I_p be $\epsilon_{\rm cm}$ be the moment of inertia the moment of inertia of the same body about another axis which is parallel to the original one.

If d is the distance between these two parallel axes and M is the mass of the body then according to the parallel axis theorem :

$$
I_p = I_{cm} + Md^2
$$

Let X and Y axes be two mutually perpendicular lines in the plane of the body. The axes intersect at origin O.

Let I_x = moment of inertia of the body about X–axis.

Let I_{y} = moment of inertia of the body about Y–axis.

The moment of inertia of the body about Z–axis (passing through O and perpendicular to the plane of the body) is given by :

 $I_z = I_x + I_y$

 $I = \frac{M\ell^2}{l^2}$ The above results The above result is known as the perpendicular axis theorem.

3.4 Radius of Gyration

If M is the mass and I is the moment of inertia of a rigid body, then the radius of gyration (k) of a body is given by : **1. ANGULAR MOMENTUM (L) AND IMPULSE**

$$
\mathbf{k} = \sqrt{\frac{\mathbf{I}}{\mathbf{M}}}
$$

**4. ANGULAR MOMEN

4.1 Angular Momentum**
 (a) For a particle

Angular momentum about ori

4.1 Angular Momentum

Angular momentum about origin (O) is given as :

$$
\vec{L} = \vec{r} \times \vec{p} = \vec{r} \times (m\vec{v})
$$

where \vec{r} = position vector of the particle ; \vec{v} = velocity \vec{L} = con

 \Rightarrow L = mv r sin θ = mv (OA) sin θ = mvr

where r_{\perp} = perpendicular distance of velocity vector from O. \Rightarrow L = mv r sin θ = mv (OA) sin θ = mvr_⊥
where r_⊥ = perpendicular distance of velocity ve
(b) For a particle moving in a circle
For a particle moving in a circle of radius r with a s

For a particle moving in a circle of radius r with a speed v, its linear momentum is mv, its angular momentum (L) is given as :

$$
L = mvr_{\perp} = mvr
$$

$$
= m_1 v_1 r_1 + m_2 v_2 r_2 + m_3 v_3 r_3 + \dots
$$

\n
$$
= m_1 r_1^2 \omega + m_2 r_2^2 \omega + m_3 r_3^2 \omega + \dots
$$

\n
$$
= (m_1 r_1^2 + m_2 r_2^2 + m_3 r_3^2 + \dots) \omega \implies L = I\omega
$$

\n
$$
= \frac{1}{2} m_1 r_1^2 \omega^2 + \frac{1}{2} m_2 r_2^2 \omega^2 + \dots
$$

\n
$$
= \frac{1}{2} m_1 r_1^2 \omega^2 + \frac{1}{2} m_2 r_2^2 \omega^2 + \dots
$$

(compare with linear momentum $p = mv$ in linear motion)

 dt dt θ

L is also a vector and its direction is same as that of ω (i.e. clockwise or anticlockwise)

 dt $\qquad \qquad \iota_{\text{net}}$

We knows,

I
\nM
\n
$$
\vec{L} = I\vec{\omega}
$$

\n $d\vec{L} = I\frac{d\vec{\omega}}{dt} = I\vec{\alpha} = \vec{\tau}_{net}$

 4.2 Conservation of angular momentum

dius of Gyration	ROTATION MOTION
de mass and I is the moment of inertia of a rigid body, then	L is also a vector and its direction is same as that of ω (i.e. clockwise)
as of gyration (k) of a body is given by :	L is also a vector and its direction is same as that of ω (i.e. clockwise)
we knows,	$\vec{L} = I \vec{\omega}$
NotULAR MOMENTUM (L) AND IMPULSE	$d\vec{L} = I \frac{d\vec{\omega}}{dt} = I \vec{\omega} = \vec{\tau}_{\text{test}}$
gular Momentum	$\vec{H} \cdot \vec{\tau}_{\text{att}} = 0$
momentum about origin (O) is given as :	$\vec{L} = \vec{r} \times \vec{p} = \vec{r} \times (m\vec{v})$
= position vector of the particle ; $\vec{v} = \text{velocity}$	$\Rightarrow \vec{L} = \text{constant}$
$\vec{L} = \vec{I} \times \vec{p} = \vec{r} \times (m\vec{v})$	$\Rightarrow \vec{L} = \vec{L}$
Answer	$\Rightarrow \vec{L} = \vec{L}$
4.3 Angular Impulse	$\vec{J} = \int \vec{\tau} dt = \Delta \vec{L}$
5. WORK AND ENERGY	
6.1 Work done by a Torque	

Consider a rigid body acted upon by a force F at perpendicular distance r from the axis of rotation. Suppose that under this force, the body rotates through an angle $\Delta\theta$. gular Impulse
 $\vec{J} = \int \vec{\tau} dt = \Delta \vec{L}$
 ORK AND ENERGY

or a rigid body acted upon by a force F at perpendicular

or a rigid body acted upon by a force F at perpendicular

or a rigid body acted upon by a force F at per **D ENERGY**
 D ENERGY
 a Torque

ody acted upon by a force F at perpendicular

axis of rotation. Suppose that under this force,

rough an angle $\Delta\theta$.
 \times displacement

ue) \times (angular displacement)
 $\frac{dW}{dt} = \tau \$ MD ENERGY

AND ENERGY

by a Torque

d body acted upon by a force F at perpendicular

the axis of rotation. Suppose that under this force,

s through an angle Δθ.

θ

θ

orque) × (angular displacement)

= $\frac{dW}{dt} = \tau \$ α is occure and the axis of rotation. Suppose that under this force,

from the axis of rotation. Suppose that under this force,

rotates through an angle Δθ.
 ϵ = force × displacement

= F r. Δθ
 ϵ = (torque) × er a rigid body acted upon by a force F at perpendicular

er from the axis of rotation. Suppose that under this force,

y rotates through an angle Δθ.

one = force × displacement

W = F r. Δθ

W = τ Δθ

W = τ Δθ

Power =

Work done = force \times displacement

$$
W = F r. \Delta \theta
$$

$$
W=\tau\,\Delta\theta
$$

Work done = $(torque) \times (angular displacement)$

$$
Power = \frac{dW}{dt} = \tau \frac{d\theta}{dt} = \tau \omega
$$

5.2 Kinetic Energy

Rotational kinetic energy of the system

e r from the axis of rotation. Suppose that under this force,
ly rotates through an angle
$$
\Delta\theta
$$
.
lone = force × displacement
 $W = F r \Delta\theta$
 $W = \tau \Delta\theta$
lone = (torque) × (angular displacement)
Power = $\frac{dW}{dt} = \tau \frac{d\theta}{dt} = \tau \omega$
inetic Energy
mal kinetic energy of the system
 $= \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 +$
 $= \frac{1}{2} m_1 r_1^2 \omega^2 + \frac{1}{2} m_2 r_2^2 \omega^2 +$

$$
= \frac{1}{2} \left(m_1 r_2^2 + m_2 r_2^2 + m_3 r_3^2 + \dots \right) \omega^2
$$

Hence rotational kinetic energy of the system = $\frac{1}{2} I \omega^2$

The total kinetic energy of a body which is moving through space as well as rotating is given by :

$$
K = K_{\text{translational}} + K_{\text{rotational}}
$$

\n
$$
K = \frac{1}{2} MV_{\text{CM}}^{2} + \frac{1}{2}I_{\text{CM}}\omega^{2}
$$

\nwhere $V_{\text{CM}} = \text{velocity of the centre of mass}$
\n $I_{\text{CM}} = \text{moment of inertia about CM}$

 I_{CM} = moment of inertia about CM

 ω = angular velocity of rotation

- here V_{CM} = velocity of the ce
 I_{CM} = moment of inertia a
 $ω$ = angular velocity of the ce
 6. ROLLING

Friction is responsible to **6. ROLLING**
1. Friction is responsible for the motion but work done or
dissipation of energy against friction is zero as there is dissipation of energy against friction is zero as there is no relative motion between body and surface at the point of contact. 2. In case of rolling all point of a rigid body have same angular

speed but different linear speed. The linear speed is
- maximum for the point H while minimum for the point L.

general (when surface is moving) in terms of velocity : $V_{cm} - \omega R = V_{B}$ in terms of rotation : $a_{cm} - \alpha R = a_{B}$ special case (when $V_B = 0$) in terms of velocity : $V_{cm} = \omega R$ in terms of acceleration : $a_{cm} = \alpha R$ special case (when $V_B = 0$)
in terms of velocity : $V_{cm} = \omega R$
in terms of acceleration : $a_{cm} = c$
(ii) Total KE of Rolling body :

(i)
$$
K = \frac{1}{2} I_p \omega^2
$$
 OR

(ii)
$$
K = \frac{1}{2} I_{cm} \omega^2 + \frac{1}{2} MV_{cm}^2
$$

where (a) $I_p = I_{cm} + MR^2$ (parallel axes theorem) where (a) $I_p = I_{cm} + MR^2$ (p.

(b) $V_{cm} = \omega R$ [pure] i

4. Forward Slipping

(b) $V_{cm} = \omega R$ [pure] rolling condition.

The bottom most point slides in the forward direction w.r.t. ground, so friction force acts opposite to velocity at lowest point i.e. opposite to direction of motion e.g. When sudden The bottom most point slides in the forward direction w.r.t.
ground, so friction force acts opposite to velocity at lowest
point i.e. opposite to direction of motion e.g. When sudden
brakes are applied to car its 'v' rema decreases so its slides on the ground. ground, so friction force acts
point i.e. opposite to direction
brakes are applied to car its
decreases so its slides on the
5. Backward Slipping

The bottom most point slides in the backward direction w.r.t. ground, so friction force acts opposite to velocity i.e. friction will act in the direction of motion e.g. When car starts on a slippery ground, its wheels has small 'v' but large 'or' so wheels slips on the ground and friction acts against slipping. **EXECUTE 1.6 EXECUTE: EXECUTE: EXECUTE: EXECUTE: EXECUTE: CALC CALC 2.6 EXECUTE: CALC 2.6 EXECUTE: CALC 2.6 EXECUTE: Rolling and sliding motion on an inclined plane**

(where $\beta = [1 + I/Mr^2]$)

- Velocity of falling and sliding bodies are equal and is more than rollings.
- Acceleration is maximum in case of falling and minimum in case of rolling.
- Falling body reaches the bottom first while rolling last.

Mr. Manish Mavi Sir