For More Study Material

For Class 9 Science	$\underline{\text { Click here }}$
For Class 9 Mathematics	$\underline{\text { Click here }}$
For Class 10 Science	$\underline{\text { Click here }}$
For Class 10 Mathematics	$\underline{\text { Click here }}$
For Class 11 Physics	$\underline{\text { Click here }}$
For Class 11 Chemistry	$\underline{\text { Click here }}$
For Class 11 Biology	$\underline{\text { Click here }}$
For Class 11 mathematics	$\underline{\text { Click here }}$
For Class 12 Physics	$\underline{\text { Click here }}$
For Class 12 Chemistry	$\underline{\text { Click here }}$
For Class 12 Biology	$\underline{\text { Click here }}$
For Class 12 Mathematics	

1. In an ac circuit the current
1) is in phase with the voltage
2) leadsthe voltage
3) lags the voltage
4) any of the above depending on the circumstances
2. The average e.m.f during the positive half cycle of an a.c. supply of peak value E_{0} is
1) E_{0} / π
2) $E_{0} / \sqrt{2}$
3) $E_{0} / 2 \pi$
4) $2 \mathrm{E}_{0} / \pi$
3. Alternating current is transmitted to distant places at
1) high voltage and low current
2) high voltage and high current
3) low voltage and low current
4) low voltage and high current
4. In case of a.c circuit, Ohm's law holds good for
a) Peak values of voltage and current
b) Effective values of voltage and current
c) Instantaneous values of voltage and current
1) only a is true
2) only a and b aretrue
3) only c is true
4) a, band c aretrue
5. In case of AC circuits the relation $\mathrm{V}=\mathrm{i} \mathrm{Z}$, where Z is impedance, can directly applied to
1) peak values of voltage and current only
2) rms values of voltage and current only
3) instantaneous values of voltage and current only
4) both 1 and 2 aretrue
6. Alternating current can not be measured by direct current meters, because
1) alternating current can not pass through an armeter
2) theaverage value of current for completecycle is zero
3) some amount of alternating current is destroyed inthearmeter
4) peak value of current is zero
7. The r.m.s. value of potential due to superposition of given two alternating potentials $E_{1}=E_{0} \sin \omega t$ and $E_{2}=E_{0} \cos _{\omega} t$ will be
1) E_{0}
2) $2 E_{0}$
3) $E_{0} \sqrt{2}$
4) Zero
8. If the instantaneous values of current is $\mathrm{I}=2 \cos (\omega \mathrm{t}+\theta) \mathbf{A}$ in a circuit, ther.m.s. value of current in ampere will be
1) 2
2) $\sqrt{2}$
3) $2 \sqrt{2}$
4) zero
9. If a capacitor is connected to two differentA.C. generators, then the value of capacitive reactance is
1) directly proportional to frequency
2) inversely proportional to frequency
3) independent of frequency
4) inversely proportional to the square of frequency
10. In general in an alternating current circuit
1) the average value of current is zero
2) the average value of square of the current is zero
3) average power dissipation is zero
4) the phase difference between voltage and current is zero

> A.C ACROSS R-L,R-C,L-C \& L-C-R SERIES CIRCUIT
11. The magnitude of induced e.m.f in an LR circuit at break of circuit as compared to its value at make of circuit will be

1) less
2) more
3) some times less and sometimes more
4) nothing can be said
12. The emf and current in a circuit are such that $\mathbf{E}=\mathrm{E}_{0} \boldsymbol{\operatorname { s i n }} \omega \mathrm{t}$ and $\mathrm{I}=\mathrm{I}_{0} \boldsymbol{\operatorname { s i n }}(\omega \mathrm{t}-\theta)$. This AC circuit contains.
1) R and L
2) R and C 3) only R
3) only C
13. The correct graph between the resistance of a conductor with frequency is
x

3)

4)

14. Same current is flowing in two alternating circuits. The first circuit contains only inductance and the other contains only a capacitor. If the frequency of the e.m.f. is increased, the current will

1) increase in first circuit and decrease in the other
2) increase in both circuits
3) decrease in both circuits
4) decrease in first circuit and increase in the other
15. When an a.c source is connected across a resistor
1) The current leads the voltage in phase
2) The current lags behind the voltage in phase
3) The current and voltage are in same phase
4) The current and voltage are out of phase
16. The phase anglebetween current and voltage in a purely inductive circuit is
1) zero
2) π
3) $\pi / 4$
4) $\pi / 2$
17. Ratio of impedence to capacitive reactance has
1) no units
2) ohm
3) ampere 4) tesla
18. An inductor coil having some resistance is connected to an AC source. Which of the following have zero average value over a cycle
1) induced erff in theinductor only
2) currentonly 3) both 1 and 24) nether 1 nor 2
19. The current does not rise immediately in a circuit containing inductance
1) because of induced enf
2) because of high voltage drop
3) both 1 and 2 4) because of joule heating
20. In an AC circuit containing only capacitance the current
1) leads the voltage by $180{ }^{\circ}$
2) lags the voltage by 90°
3) leads the voltage by 90°
4) remains in phase with the voltage
21. A bulb is connected first with dc and then ac of same voltage. Then it will shine brightly with
1) $A C$
2) $D C$
3) Equally with both
4) Brightness will be in ratio $1 / 14$
22. A capacitor of capacity C is connected in A.C. circuit. If the applied emf is $V=V_{0} \sin _{\omega} \mathrm{t}$, then the current is
1) $I=\frac{V_{0}}{L \omega} \sin \omega t$
2) $I=\frac{V_{0}}{\omega C} \sin \left(\omega t+\frac{\pi}{2}\right)$
3) $I=V_{0} C \omega \sin \omega t$
4) $I=V_{0} C \omega \sin \left(\omega t+\frac{\pi}{2}\right)$
23. At low frequency a condenser offers
1) high impedance
2) low impedance
3) zero impedance
4) impedance of condenser is independent of frequency
24. Statement (A) : The reactance offered by an inductance in A.C. circuit decreases with increase of AC frequency.
Statement (B) : The reactance offered by a capacitor in AC circuit increases with increase of AC frequency.
1) A is true but B is false
2) Both A and B aretrue
3) A is false but B is true
4) Both A and B arefalse
25. Statement (A): With increase in frequency of AC supply inductive reactance increases. Statement (B) : With increase in frequency of AC supply capacitive reactance increase
1) A is true but B is false
2) Both A and B are true
3) A is false but B is true
4) Both A and B arefalse
26. In an A.C circuit having resistance and capacitance
1) erff leads the current
2) current lags behind theerf
3) both the current and erff are in phase
4) current leads theerf.
27. Select the correct options among the following: In an R-C circuit
a) instantaneous A.C is given by $I=I_{0} \sin (w t+\phi)$
b) the alternating current in the circuit leads the emf by a phase angle ϕ.
c) Its impedance is $\sqrt{R^{2}+(\omega C)^{2}}$
d) Its capacitive reactance is $\omega \mathbf{c}$
1) a, b areture
2) b, c, d aretrue
3) c, d aretrue
4) a, c aretrue
28. If the frequency of alternating e.m.f. isf in L -C-R circuit, then the value of impedance Z will change with \log (frequency) as
1) increases
2) increases and then becomes equal to resistance, then it will start decreasing
3) decreases and when it becomes minimum equal to the resistancethen it will start increesing 4) go on decreasing
29. An inductance and resistance are connected in series with an A.C circuit. In this circuit
1) the current and P.d across the resistance lead P.d across the inductance by $\pi / 2$
2) the current and P.d across the resistance lags behind the P.d across the inductance by angle $\pi / 2$
3) The current across resistance leads and the P.d across resistance lags behind the P.d across theinductanceby $\pi / 2$
4) the current across resistance lags behind and the P.d across the resistance leads the P.d across the inductanceby $\pi / 2$
30. An LCR circuit is connected to a source of alternating current. At resonance, the applied voltage and the current flowing through the circuit will have a phase difference of
1) $\pi / 4$
2) zero
3) π
4) $\pi / 2$
31. The incorrect statement for L-R-C series circuit is
1) The potential differenceacross theresistance and the appleid e.mf. are always in same phase
2) The phase difference across inductive coil is 90°
3) The phase difference between the potential difference across capacitor and potential difference across inductance is 90°
4) The phase difference between potential difference across capacitor and potential difference across resistance is 90°
32. In series $L-C-R$ resonant circuit, to increase the resonant frequency
1) L will have to be increased
2) C will have to be increased
3) LC will haveto be decreased
4) LC will haveto be increased
33. If in a series $L-C-R$ ac circuit, the voltages across R, L, C are V_{1}, V_{2}, V_{3} respectively. Then the voltage of applied ${ }^{3}$ AC source is always equal to
1) $V_{1}+V_{2}+V_{3}$
2) $\sqrt{V_{1}^{2}+\left(V_{2}+V_{3}\right)^{2}}$
3) $V_{1}-V_{2}-V_{3}$
4) $\sqrt{V_{1}^{2}+\left(V_{2}-V_{3}\right)^{2}}$
34. In non-resonant circuit, the nature of circuit for frequencies greater than the resonant frequency is
1) resistive
2) capacitive
3) inductive
4) both 1 and 2
35. The phase difference between voltage and current in an LCR series circuit is
1) zero always
2) π /4always
3) π
4) between 0 and $\pi / 2$
36. In an LCR a.c circuit at resonance, the current
1) Is al ways in phase with the voltage
2) Always leads the voltage
3) Always lags behind the voltage
4) May lead or lag behind the voltage
37. An inductance L and capacitance C and resistance \mathbf{R} are connected in series across an AC source of angular frequency ω. If $\omega^{2}>\frac{1}{L C}$ then
1) elff leads the current
2) both theerf and the current are in phase
3) current leads the erff
4) enf lags behind the current
38. C onsider the following two statements A and B and identify the correct answer.
A) At resonance of L-C-R series circuit, the reactance of circuit is minimum.
B) The reactance of a capacitor in an A.C circuit is similar to the resistance of a capacitor in a D.C. circuit
1) A is true but B is false
2) Both A and B aretrue
3) A is false but B is true
4) Both A and B are false
39. Choose the wrong statement of the following.
1) The peak voltage across the inductor can be less than the peak voltage of the source in an LCR circuit
2) In a circuit containing a capacitor and an ac source the current is zero at the instant source voltage is maximum
3) When an AC source is connected to a capacitor, then therms current in thecircuit gets increased if a dielectric slab is inserted into the capacitor.
4) In apureinductivecircuit erf will bein phase withthecurrent
40. The essential difference between a d.c. dynamo and an a.c. dynamo is that
1) a.c. has an electromagnet but d.c. has a permanentmagnet
2) a.c. will generate a higher voltage
3) a.c.has sliprings but thed.c. has a commutator
4) a.c. dynamo has a coil wound on soft iron,
but the d.c. dynamo has a coil wound on copper
41. The unit of impedence is
1) ohm
2) mho
3) ampere 4) volt
42. The power factor of a.c. circuit having L and R connected in series to an a.c. source of angular frequency ω is given by
1) $\frac{\sqrt{R^{2}+\omega^{2} L^{2}}}{R}$
2) $\frac{R}{\sqrt{R^{2}+\omega^{2} L^{2}}}$
3) $\left.\frac{\omega L}{R} 4\right) \frac{R}{\omega L}$
43. The capacitor offers zero resistance to
1) D.C. only
2) A.C. \& D.C.
3) A.C. only
4) neitherA.C. nor D.C.
44. Power factor is defined as
1) apparent power/true power
2) true power/apparent power
3) true power (apparent power) ${ }^{2}$
4) true power x apparent power

TRANSFORMER

45. The core of a transformer islaminated so that 1) energy loss due to eddy currents may be reduced
2) rusting of the coremay beprevented
3) change in flux may be increased
4) ratio of voltage in the primary to that in the secondary may be increased
46. A step up transformer is used to
1) increase the current and increasethe voltage
2) decrease the current and increase the voltage
3) increase the current and decreesethe voltage
4) decrease the current and decreasethe voltage
47. A transformer changes the voltage
1) without changing the current and frequency
2) without changing the current but changes the frequency
3) without changing the frequency but changes the areat
4) without changing the frequency as well $\&$ the current
48. A step up transformer isconnected on theprimary sideto a rechargable battery which can deliver a large current. If a bulb is connected in the secondary, then
1) the bul bwill glow very bright
2) the bulb will get fused
3) the bulb will glow, but with less brightness
4) the bulb will not glow
49. The ratio of primary voltage to secondary voltage in a transformer is ' n '. The ratio of the primary current to secondary current in the transformer is
1) n
2) $1 / n$
3) n^{2}
4) $1 / n^{2}$
50. In a step down transformer, the number of turns in the primary is always
1) greater than the number of turns in the secondary
2) less than the number of turns inthesecondary
3) equal to the number of turns inthesecondary
4) either greater than or less than the number of turns in the secondary
51. Thetransformer ratio of a step up transformer is
1) greater than one
2) less than one
3) less than one and sometimes greater than one
4) greater than oneand sometimes less than one
52. A stepup transformer develops 400 V in secondary coil for an input of 200 V A.C. Then the type of transformer is
1) Steped down 2) Steped up
2) Same
3) Same but with reversed direction
53. Assertion(A) : If changing current is flowing through a machine with iron parts, results in loss of energy.
Reason(R): Changing magnetic flux through an area of theiron parts causes eddy currents. 1)Both A and R are individually true and R is the correct explanation of A
2)Both A and R are individually true but R is not the correct explanation of A
3)A is true but R is false
4) Both A and R arefalse
54. Transformers are used in
1) d.c circuits only
2) a.c. circuits only
3) Both a.candd.ccircuits
4) Integrated circuits.
55. The magnitude of the e.m.f. across the secondary of a transformer does not depend on
1) Thenumber of theturns inthe primary
2) Thenumber of theturns in the secondary
3) Themagnitude of theemf applied across the primary
4)The resistance of the primary and the secondary
56. For an ideal transformer ratio of output to the input power is always
1) greater than one
2) equal to one
3) less than one
4) zero
57. C onsider the following two statements A and B and identify the correct answer.
A) In a transformer a large alternating current at low voltage can betransformed into a small alternating current at high voltage
B) E nergy in current carrying coil is stored in the form of magnetic field.
1) A is true but B is false
2) Both A and B aretrue
3) A is false but B is true
4) Both A and B are false
58. Statement (A) : Flux leakage in a transformer can be minimized by winding the primary and secondary coils one over the other.
Statement (B) : C ore of the transformer is made of soft iron
59. Statement (A) : In high current low voltage windings of a transformer thick wire is used to minimizeenergy loss due to heat produced Statement (B) : The core of any transformer is laminated so as to reduce the energy loss due to eddy currents
60. Statement (A): Step up transformer converts low voltage, high current to high voltage, low current
Statement (B) : Transformer works on both ac and dc
61. To reduce the iron losses in a transformer, the core must be made of a material having
1) Iow permeability and high resistivity
2) high permeability and high resistivity
3) Iow permeability and low resistivity
4) high permeability and low resistivity
62. M aximum efficiency of a transformer depends on
1) the working conditions of technicians.
2) weather copper loss $=1 / 2 x$ iron loss
3) weather copper loss = iron loss
4) weather copper loss $=2 x$ iron loss
63. For a LCR series circuit with an A.C . source of angular frequency ω
1) circuit will be capacitive if $\omega>\frac{1}{\sqrt{L C}}$
2) circuit will be inductive if $\omega=\frac{1}{\sqrt{L C}}$
3) power factor of circuit will be unity if
capacitive reactanceequals inductivereactance
4) current will beleøding voltageif $\omega>\frac{1}{\sqrt{L C}}$
64. The value of current in two series L C R circuits at resonance is same when connected across a sinusoidal voltage source. Then
1) both circuits must be having same value of capacitance and inductance
2) in both circuits ratio of L and C will be same
3) for both the circuits X_{L} / X_{C} mustbesameat that frequency
4) both circuits must have same impedance at
all frequencies
65. When an $A C$ source of emf $e=E_{0} \sin (100 t)$ is connected across a circuit, the phase difference betwen the emf eand the current i in the circuit is observed to be $\frac{\pi}{4}$ ahead,If the circuit consists possibly of $\mathrm{R}-\mathrm{C}$ or $R-L$ or $L-C$ in series, find the relationship between the two elements:
1) $\mathrm{R}=1 \mathrm{k} \Omega, \mathrm{C}=10 \mu \mathrm{~F}$
2) $R=1 k \Omega, C=1 \mu \mathrm{~F}$
3) $R=1 \mathrm{k} \Omega, L=10 \mathrm{H}$
4) $R=1 k \Omega, L=1 H$
66. An AC voltage source of variable angular frequency ω and fixed amplitude V_{0} is connected in series with a capacitance C and an electric bulb of resistance R (inductance zero). When ω is increased
1) the bulb glows dimmer
2) the bulb glows brighter
3) total impendance of the circuit is unchanged
4) total impendance of the circuit increases

ASSERTION \& REASON

1) Both Assertion and Reason are true and Reason is the correct explanation of A ssertion.
2) Both Assertion and Reason are true but Reason is not the correct explanation of A ssertion.
3) Assertion is true but R eason is false
4) A ssertion is false but R eason is true
67. Assertion (A): The average value of $\left\langle\sin ^{2} \omega t>\right.$ is zero.
Reason (R): The average value of function $\mathrm{F}(\mathrm{t})$ over a period T is $<\mathrm{F}(\mathrm{t})\rangle=\frac{1}{\mathrm{~T}} \int_{0}^{T} \mathrm{~F}(\mathrm{t}) \mathrm{dt}$
68. Assertion (A): If current varies sinusoidally the average power consumed in a cycle is zero.
Reason (R): If current varies sinusoidally the average power consumed is zero
69. Assertion (A) : The power consumed in an electric circuit is never negative
Reason (R) : The average power consumed in an electric circuit is $P=\frac{V^{2}}{R}=I^{2} R$
70. Assertion (A): Theinductive reactance limits the current in a purely inductivecircuit in the same way as the resistance circuit.
R eason (R): The inductive reactance is directly proportional to the inductance and to the frequency of the varying current.
71. Assertion (A) : An ac emf which oscillates symmetrically about zero, the current it sustains also oscillates symmetrically about zero.
Reason (R): In any circuit element, current is always in the phase with voltage
72. Assertion (A): A lamp is connected in series with a capacitor and ac source connected across their terminals consequently current flow in the circuit and the lamp will shine.
Reaosn(R): capacitor block dc current and allow ac current
73. Assertion (A): An electric lamp is connected in series with a long solenoid of copper with air core and then connected to AC source. If an iron rod is inserted in solenoid the lamp will become dim.
Reason (R): If iron rod is inserted in solenoid, theinduction of solenoid increases.
74. An inductor, capacitor and resistance connected in series. The combination is connecte across AC source.
Assertion (A): Peak current through each remains same
Reason (R) : Average power delivered by source is equal to average power consumed by resistance.
75. Assertion (A): when frequency is greater than resonance frequency in a series LCR circuit, it will bean inductive circuit.
Reason (R): Resultant voltage will lead the current
76. Assertion (A): M aximum power is dessipated in a circuit (through R) in resonance
Reason (R) : At resonance in a series LCR circuit, the voltage across indcutor and capacitor are out of phase.
C.U.Q-KEY

1) 4	2) 4	3) 1	4) 2	5) 4	6) 2	7) 1

8) 2
9) 2
10) 1 11) 2
11) 1
12) 1
13) 4
14) 3 16) 4
15) 1 18) 3
16) 3
17) 3
18) 3
19) 4 23) 1 24) 4 25) 1 26) 4 27) 1 28) 3
20) 2 30) 2 31) 3 32) 3 33) 4 34) 3 35) 4
21) 1 37) 1 38) 1 39) 4 40) 3 41) 1 42) 2
22) 4 44) 2 45) 1 46) 2 47) 3 48) 4 49) 2
23) 1 51) 1 52) 2 53) 1 54) 2 55) 4 56) 2
24) 2 58) 4 59) 2 60) 1 61) 2 62) 3 63) 3
25) 3 65) 1 66) 2 67) 4 68) 4 69) 1 70) 2
26) 4 72) 1 73) 1 74) 2 75) 1 76) 1

C. U. Q - HINTS

67.

$<\sin ^{2} \omega t>=1 / 2$
68. $\langle P\rangle=\frac{1}{2} i_{m}^{2} R$
69. I is scalar inJ oules heating effect is independent an direction of current.
70. $\mathrm{I}=\frac{\mathrm{V}}{\mathrm{X}_{\mathrm{L}}} \& \mathrm{i}=\frac{\mathrm{V}}{\mathrm{R}} \quad \mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}=2 \pi \mathrm{~V}$
71. In inductor current lags the voltage by $\frac{\pi}{2}$

In capcitor current leads the voltage by $\frac{\pi}{2}$
72. $X_{C}=\frac{1}{2 \pi f C}$
for dc $f=0$ then $X_{L}=\infty$
for ac $\mathrm{f} \neq 0$ then $\mathrm{X}_{\mathrm{c}}=$ finite
73. $\mathrm{L} \propto \mu_{\mathrm{r}}$
more voltage is present across inductor so less voltage across bulb
74. In series current is same, inductor and capacitor does not consumepower
75. At resonance $X_{L}=X_{C}$ and frequency
$f_{0}=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}}$ If $f>f_{0}$ then $X_{L}>X_{C}$, so it will bean inductivecircuit. AC current must lag $A C$ voltage
76. At resonance $\mathrm{P}=I_{\text {max }}^{2} R$ and V_{L} and V_{C} are out of phase. $I_{\text {max }}$ is due to $Z_{\text {min }}=R$ which is due to out of phaseof V_{L} and V_{C}.

INSTANTANEOUS, PEAK,R.M.S \& AVERAGE VALUES OF A.C AND A.V

1. The r.m.s. value of an a.c. of 50 Hz is 10 A . The time taken by the alternating current in reaching from zero to maximum valueand the peak value of current will be
1) $2 \times 10^{-2} \mathrm{sec}$ and 14.14 A 2) $1 \times 10^{-2} \mathrm{sec}$ and 7.07 A
2) $5 \times 10^{-3} \mathrm{sec}$ and 7.07 A 4) $5 \times 10^{-3} \mathrm{sec}$ and 14.14 A
2. An inductor has a resistance R and inductance L. It is connected to an A.C . source of e.m.f E_{v} and angular frequency ω, then the current I_{v} in the circuit is

$$
\text { 1) } \frac{E_{V}}{\omega L} \text { 2) } \frac{E_{V}}{R} \text { 3) } \frac{E_{v}}{\sqrt{R^{2}+\omega^{2} L^{2}}} \text { 4) } \sqrt{\left(\frac{E_{V}}{R}\right)^{2}+\left(\frac{E_{v}}{\omega L}\right)^{2}}
$$

3. The peak voltage of 220 Volt AC mains (in Volt) is
1) 155.6
2) 220.0
3) 311
4) 440.0
4. Thepeak value of A.C. is $2 \sqrt{2} A$. It's apparent value will be
1) 1 A
2) $2 A$
3) $4 A$
4) zero
5. Alternating current in circuit is given by $I=I_{0} \sin 2 \pi \mathrm{nt}$. Then the time taken by the current to risefrom zero to r.m.s. valueisequal to
1) $1 / 2 n$
2) $1 / n$
3) $1 / 4 n$
4) $1 / 8 n$
6. Using an A.C. voltmeter the potential difference in the electrical line in a house is read to be 234 volt. If the line frequency is known to be 50 cycles/second, the equation for the line voltage is
1) $V=165 \sin (100 \pi t)$
2) $V=331 \sin (100 \pi t)$
3) $V=220 \sin (100 \pi t)$
t) 4) $V=440 \sin (100 \pi t)$
7. A mixer of 100Ω resistance is connected to an A.C . source of 200 V and $50 \mathrm{cycles} / \mathrm{sec}$. The value of average potential difference across the mixer will be
1) 308 V
2) 264 V
3) 220 V
4) zero
A.C ACROSS PURE RESISTOR,
INDUCTOR \& CAPACITOR
8. The equation of an alternating voltage is $E=220 \sin (\omega t+\pi / 6)$ and the equation of the current in the circuit is $\mathrm{I}=10 \sin (\omega \mathrm{t}-\pi / 6)$.
Then the impedance of the circuit is
1) 10 ohm
2) 22 ohm
3) 11 ohm
4) 17 ohm
9. A steady P.D. of 10 V produces heat at a rate ' x ' in resistor. The peak value of A.C. voltage which will produceheat at rate of $\mathrm{x} / 2$ in same resistor is
1) 5 V
2) $5 \sqrt{2} \mathrm{~V}$
3) 10 V
4) $10 \sqrt{2} \mathrm{~V}$
10. An alternating voltage of $\mathrm{E}=200 \sqrt{2} \sin (100 t) \mathrm{V}$ is connected to a condenser of $1 \mu \mathrm{~F}$ through an A.C. ammeter. The reading of the ammeter will be
1) 10 mA
2) 40 mA
3) 80 mA
4) 20 mA
11. Theinductance of a coil is 0.70 henry. An A.C. source of 120 volt is connected in parallel with it. If the frequency of A.C. is 60 Hz , then the current which isflowing in inductance will be
1) 4.55 A
2) 0.355 A
3) 0.455 A
4) 3.55 A

TRANSFORMER

12. A transformer steps up an A.C . voltage from 230 V to 2300 V . If the number of turns in the secondary coil is 1000 , the number of turns in the primary coil will be
1) 100
2) 10,000
3) 500
4) 1000
13. Thetransformer ratio of a transformer is 5 . If the primary voltage of the transformer is 400 $\mathrm{V}, 50 \mathrm{~Hz}$, the secondary voltage will be
1) $2000 \mathrm{~V}, 250 \mathrm{~Hz}$
2) $80 \mathrm{~V}, 50 \mathrm{~Hz}$
3) $80 \mathrm{~V}, 10 \mathrm{~Hz}$
4) $2000 \mathrm{~V}, 50 \mathrm{~Hz}$
14. A step-up transformer works on 220 V and gives 2A to an external resistor. Theturn ratiobetween the primary and secondary coils is $\mathbf{2 : 2 5}$. Assuming 100\% efficiency, find the secondary voltage, primary current and power delivered respectively
1) $2750 \mathrm{~V}, 25 \mathrm{~A}, 5500 \mathrm{~W} 2) 2750 \mathrm{~V}, 20 \mathrm{~A}, 5000 \mathrm{~W}$
2) $2570 \mathrm{~V}, 25 \mathrm{~A}, 550 \mathrm{~W}$
3) $2750 \mathrm{~V}, 20 \mathrm{~A}, 55 \mathrm{~W}$

A.C ACROSS L-R,L-C \& L-C-R SERIES CIRCUITS

15. A coil of self - inductance $\left(\frac{1}{\pi}\right) \mathrm{H}$ is connected in series with a 300Ω resistance. A voltage of 200 V at frequency 200 Hz is applied to this combination. The phase difference between the voltage and the current will be
1) $\tan ^{-1}\left(\frac{4}{3}\right)$
2) $\tan ^{-1}\left(\frac{3}{4}\right)$
3) $\tan ^{-1}\left(\frac{1}{4}\right)$
4) $\tan ^{-1}\left(\frac{5}{4}\right)$
16. A condenser of $10 \mu \mathrm{~F}$ and an inductor of 1 H are connected in series with an A.C. source of frequency 50 Hz . The impedance of the combination will be (take $\pi^{2}=10$)
1) zero
2) Infinity
3) 44.7_{Ω}
4) 5.67Ω
17. A 100 km telegraph wire has capacity of $0.02 \mu \mathrm{~F} / \mathrm{km}$, if it carries an alternating current of frequency 5 kHZ . The value of an inductance required to be connected in series so that the impedence is minimum.
1) 50.7 mH
2) 5.07 mH
3) 0.507 mH
4) 507 mH
18. In an LCR series circuit the rms voltages across R, L and C are found to be $10 \mathrm{~V}, 10 \mathrm{~V}$ and 20 V respectively. Therms voltage across the entirecombination is
1) 30 V
2) 1 V
3) 20 V
4) $10 \sqrt{2} \mathrm{~V}$
19. In the circuit shown, a 30 V d.c. source gives a current 2.0 A as recorded in the ammeter A and 30 V a.c. source of frequency 100 Hz gives a current 1.2A. The inductive reactance is

1) 10 ohm
2) 20 ohm
3) $5 \sqrt{34} \mathrm{ohm} 4) 40 \mathrm{ohm}$
20. A choke coil has negligible resistance. The alternating potential drop across it is 220 volt and thecurrent is 5 mA . The power consumed is
1) $220 \times \frac{5}{1000} \mathrm{~W}$
2) $\frac{220}{5} \mathrm{~W}$
3) zero
4) $2.20 \times 5 \mathrm{~W}$
21. In an A.C . circuit, the instantaneous values of e.m.f. and current are $E=200 \sin 314 t$ volt and $\mathrm{I}=\sin (314 \mathrm{t}+\pi / 3)$ ampere then the average power consumed in watts is
1) 200
2) 100
3) 0
4) 50
22. In a black box of unkown elements (L, C or R or any other combination) an AC voltage $E=E_{0} \sin (\omega t+\phi)$ isapplied and current in the circuit was found to be $i=i_{0} \sin (\omega t+\phi+\pi / 4)$. Then the unknown elements in the box may be

1) only capacitor 2) bothinductor and resistor
2) either capacitor, resistor and inductor or only capacitor and resistor 4) only resistor
23. The voltage time (V-t) graph for triangular wave having peak value V_{0} is as shown in figure.

Therms value of \mathbf{V} in timeinterval from $t=0$ to $\frac{T}{4}$ is

1) $\frac{V_{0}}{\sqrt{3}}$
2) $\frac{V_{0}}{2}$
3) $\frac{V_{0}}{\sqrt{2}}$
4) $2 V^{\circ}$

LEVEL-I (C.W)-KEY

1) 4
2) 3
3) 3
4) 2
5) 4
6) 2 7) 4
7) 2
8) 3
9) 4 11) 3
10) 1
11) 4 14) 1
12) 1 16) 1 17) 3 18) 4 19) 2 20) 3 21) 4
13) 3 23) 1

LEVEL-I (C.W) - HINTS

1. $\mathrm{i}_{0}=\sqrt{2} \mathrm{i}_{\mathrm{rmb}}, \mathrm{T}=\frac{1}{\mathrm{f}}, \mathrm{t}=\frac{\mathrm{T}}{4}$
2. $i=\frac{E_{0}}{\sqrt{R^{2}+X_{L}^{2}}}, X_{L}=L \omega$
3. $\mathrm{V}_{0}=\sqrt{2} . \mathrm{V}_{\text {r.ms }}=\sqrt{2} \times 200=311 \mathrm{volt}$
4. $I_{\mathrm{ms}}=\frac{I_{0}}{\sqrt{2}}$
5. $t=\frac{T}{4}=\frac{1}{4 f}$
6. $\mathrm{E}=\mathrm{E}_{0} \sin \omega \mathrm{t}$; voltagereadis r.ms. value
$\mathrm{E}_{0}=\sqrt{2} \times 23 \mathrm{~A}=331 \mathrm{volt}$
and $\omega \mathrm{t}=2 \pi \mathrm{nt}=2 \pi \times 50 \times \mathrm{t}=100 \pi \mathrm{t}$
Thus, theeqn of linevoltageisgivenby
$\mathrm{V}=331 \sin (100 \pi \mathrm{t})$
7. For onecompleterotation, average voltageiszero
8. $z=\frac{E_{0}}{I_{0}}$
9. $\frac{v^{2}}{R}=x, \frac{v_{1}^{2}}{R}=\frac{x}{2} \Rightarrow v_{1}=\frac{v}{\sqrt{2}}$
\therefore in thesecond case $\mathrm{V}_{\mathrm{mb}}=\mathrm{V}_{1} \quad \therefore \mathrm{~V}_{0}=\sqrt{2} \mathrm{~V}_{1}$
10. $I_{\text {ms }}=\frac{E_{\text {ms }}}{X_{C}}=\frac{E_{0} \omega C}{\sqrt{2}}$
11. $X_{L}=2 \pi \mathrm{fl}=6.28 \times 60 \times 0.70=263.76 \Omega$

$$
I=\frac{V}{X_{L}}=\frac{120}{263.76}=0.455 \mathrm{~A}
$$

12. $\frac{\mathrm{n}_{\mathrm{s}}}{\mathrm{n}_{\mathrm{p}}}=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{V}_{\mathrm{p}}}$
13. Frequency remainssame $\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{V}_{\mathrm{p}}}=5$
14. $\frac{E_{s}}{E_{p}}=\frac{N_{s}}{N_{p}}=\frac{i_{p}}{i_{s}}, \quad P=E_{s} i_{s}$
15. $\tan \theta=\frac{2 \pi f \mathrm{~L}}{\mathrm{R}}, \quad \mathrm{f}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}$
16. $\mathrm{Z}=\left(2 \pi \mathrm{fL}-\frac{1}{2 \pi \mathrm{fC}}\right)$
17. $\omega=\frac{1}{\sqrt{\mathrm{LC}}} \Rightarrow \mathrm{L}=\frac{1}{\omega^{2} \mathrm{C}}=\frac{1}{(2 \pi \mathrm{n})^{2} \mathrm{C}}$
18. $\mathrm{V}=\sqrt{\mathrm{V}_{\mathrm{R}}^{2}+\left(\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{C}}\right)^{2}}$
19. Whend.c. source, $R=\frac{V}{l}=\frac{30}{2}=15 \Omega$

Whena.c. source, $Z=\frac{30}{1.2}=25 \Omega$
$X_{L}=\sqrt{(25)^{2}-(15)^{2}}=\sqrt{625-225}=20 \Omega$
20. Averagepowe iszero
21. $P_{a v g}=I_{m s} E_{m s} \cos \phi=\frac{1}{\sqrt{2}} \times \frac{200}{\sqrt{2}} \cos 60^{\circ}$ 50W
22. Herecurrentleads thevoltage So, thereis reactancewhichiscapacitive
$\Rightarrow X=X_{C}-X_{L}$ or $X=X_{C}$ alone besides R
23. Ans: (a)
$V=\frac{V_{0} t}{T / 4}=\frac{4 V_{0} t}{T}$
$V_{r m s}=\sqrt{\left\langle V^{2}\right\rangle}=\frac{4 V_{0}}{T}\left\{\frac{\int_{0}^{T / 4} t^{2} d t}{\frac{T}{T / 4} d t}\right\}=\frac{V_{0}}{\sqrt{3}}$

INSTANTANEOUS, PEAK,R.M.S \& AVERAGE VALUES OF A.C AND A.V

1. For a given $A C$ source theaverageemf during the positive half cycle
1) depends on E_{0}
2) depends on shape of wave
3) both 1 and 2
4) depends only on peak value of E_{0}
2. An alternating emf given by $\mathrm{V}=\mathrm{V}_{0} \operatorname{Sin} \omega \mathrm{t}$ has peak value 10 volt and frequency 50 Hz . The instantaneous emf at $t=\frac{1}{600} \mathrm{~s}$ is
1) 10 V
2) $5 \sqrt{3} \mathrm{~V}$
3) 5 V
4) 1 V
3. The equation of A.C. of frequency 75 Hz , if it's RMS value is 20A is
1) $I=20 \sin (150 \pi t)$
2) $I=20 \sqrt{2} \operatorname{Sin}(150 \pi t)$
3) $I=\frac{20}{\sqrt{2}} \sin (150 \pi t)$
4) $I=20 \sqrt{2} \operatorname{Sin}(75 \pi t)$
4. The voltage of an A.C. source varies with time according totheequation $\mathrm{V}=50 \sin 100 \pi \mathrm{tcos} 100 \pi \mathrm{t}$, where ' t ' is in sec and ' V ' is in volt. Then
1) The peak voltage of thesourceis 100 V
2) Thepeak voltage of the sourceis $100 / \sqrt{2} \mathrm{~V}$
3) The peak voltage of thesourceis 25 V
4) Thefrequency of thesourceis 50 Hz
5. Theform factor for a sinusoidal A.C. is
1) $2 \sqrt{2}: \pi$
2) $\pi: 2 \sqrt{2}$
3) $\sqrt{2}: 1$
4) $1: \sqrt{2}$
6. At resonance the peak value of current in L-C-R series circuit is
1) E_{d} / R
2) $\frac{E_{0}}{\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}}$
3)

$\frac{E_{0}}{\sqrt{2} \sqrt{R^{2}+\left(\omega^{2} L-\frac{1}{\omega^{2} C^{2}}\right)^{2}}}$
4) $\frac{E_{0}}{\sqrt{2} R}$
7. In an AC circuit, the rms value of the current, $I_{\text {rms }}$ is related to the peak current I_{0} as

1) $I_{\mathrm{rms}}=\frac{1}{\pi} I_{0}$
2) $I_{\text {rms }}=\frac{1}{\sqrt{2}} I_{0}$
3) $I_{\text {rms }}=\sqrt{2} I_{0}$
4) $I_{r m s}=\pi I_{0}$
8. A voltmeter connected in an A.C circuit reads 220V. It represents,
1) peak voltage
2) RMS voltage
3) Average voltage
4) Meansquarevoltage
9. If theinstantaneous current in a circuit isgiven by $\mathrm{I}=2 \cos (\omega \mathrm{t}+\phi) \mathrm{A}$, the rms value of the current is
1) 2 A
2) $\sqrt{2} A$
3) $2 \sqrt{2} \mathrm{~A}$
4) zero
10. Thetimetaken by an $A C$ of 50 Hz in reaching from zero to its maximum value will be
1) 0.5 s
2) 0.005 s
3) 0.05 s
4) 5 s
11. A generator produces a voltage that is given by $V=240 \sin 120 t V$, wheret is in second. The frequency and r.m.s. voltage are respectively
1) 60 Hz and 240 V
2) 19 Hz and 120 V
3) 19 Hz and 170 V
4) 754 Hz and 170 V

A.C ACROSS PURE RESISTOR, INDUCTOR \& CAPACITOR

12. A $220 \mathrm{~V}, 50 \mathrm{HzAC}$ supply is connected across a resistor of $50 \mathrm{k} \Omega$. The current at time t second, assuming that it is zero at $t=0$, is
1) $4.4 \sin (314 \mathrm{t}) \mathrm{mA}$
2) $6.2 \sin (314 \mathrm{t}) \mathrm{mA}$
3) $4.4 \sin (157 \mathrm{t}) \mathrm{mA}$
4) $6.2 \sin (157 \mathrm{t}) \mathrm{mA}$
13. A resistance of 20Ω is connected to a source of alternating current rated $110 \mathrm{~V}, 50 \mathrm{~Hz}$. Then the time taken by the current to change from its maximum value to the r.m.s. value is
1) $2.5 \times 10^{-3} \mathrm{sec}$
2) $2.5 \times 10^{-2} \mathrm{sec}$
3) $5 \times 10^{-3} \mathrm{sec}$
4) $25 \times 10^{-3} \mathrm{sec}$
14. A condenser of capacity 1 pF is connected to an A.C source of 220 V and 50 Hz frequency. The current flowing in the circuit will be
1) $6.9 \times 10^{8} \mathrm{~A}$
2) 6.9 A
3) $6.9 \times 10^{6} \mathrm{~A}$
4) zero
15. In a circuit, the frequency is $f=\frac{1000}{2 \pi} \mathrm{~Hz}$ and the inductance is 2 henry, then the reactance will be
1) 200Ω
2) $200 \mu \Omega$
3) 2000Ω
4) $2000 \mu \Omega$

TRANSFORMER

16. Thetransformer ratio of a transformer is 10:1. Thecurrentin theprimary circuit if thesecondary current required is 100 A assuming the transformer beideal, is
1) 500 A
2) 200 A
3) 1000 A
4) 2000 A
17. The transformer ratio of a transformer is 10:1. If the primary voltage is 440 V , secondary emf is
1) 44 V
2) 440 V
3) 4400 V
4) 44000 V

A.C ACROSS L-R,L-C \& L-C-R SERIES CIRCUITS

18. Thefrequency at which theinductivereactance of 2 H inductance will beequal to the capacitive reactance of $2 \mu \mathrm{~F}$ capacitance (nearly)
1) 80 Hz
2) 40 Hz
3) 60 Hz
4) 20 Hz
19. In a series LCR circuit $R=10 \Omega$ and the impedance $Z=20 \Omega$. Then the phase difference between the current and the voltage is
1) 60°
2) 30°
3) 45°
4) 90°
20. In an L-C-R series circuit,
$R=\sqrt{5} \Omega, X_{L}=9 \Omega, X_{C}=7 \Omega$. If applied voltage in the circuit is 50 V then impedance of the circuit in ohm will be
1) 2
2) 3
3) $2 \sqrt{5}$
4) $3 \sqrt{5}$
21. In an AC circuit the potential differences across an inductance and resistance joined in series are respectively 16 V and 20 V . The total potential difference across the circuit is
1) 20 V
2) 25.6 V
3) 31.9 V
4) 53.5 V
22. Current in an ac circuit isgiven by
$i=3 \sin \omega t+4 \cos \omega t$ then
1) rmsvalue of current is 5 A
2) mean valueof this current in onehalf period will
be $6 / \pi$
3) if voltage applied is $V=V_{m} \sin \omega t$ then the circuit must be containing resistance and capacitance
4) if voltageappliedis $V=V_{m} \sin \omega t$, theciraitmay containresistanceand inductance
23. A fully charged capacitor C with initial charge q_{0} is connected to a coil of self inductance L at $t=0$. The timeat which the energy is stored equally between the electric and the magnetic fields is
1) $\frac{\pi}{4} \sqrt{L C}$
2) $2 \pi \sqrt{\mathrm{LC}}$
3) $\sqrt{L C}$
4) $\pi \sqrt{L C}$

LEVEL-I (H.W) - KEY

1) 3
2) 3
3) 2
4) 3
5) 2
6) 1 7) 2
7) 2
8) 2
9) 2 11) 3
10) 2
11) 1 14) 1
12) 3 16) 3
13) 3
14) 1 19) 1
15) 2 21) 2
16) 3 23) 1

LEVEL-I (H.W) - HINTS

1. $\mathrm{E}_{\mathrm{av}}=\frac{2 \mathrm{E}_{0}}{\mathrm{~T}} \int_{0}^{\mathrm{T} / 2} \sin (\omega \mathrm{t}) \mathrm{dt}=\frac{2 \mathrm{E}_{0}}{\pi}$
2. $V=10 \sin (100 \pi t) ; \quad t=\frac{1}{600} \mathrm{~s}$
3. $\quad i=i_{0} \sin \omega t=\sqrt{2} i_{\mathrm{rmb}} \sin (2 \pi \mathrm{ft})$
4. $\quad V_{0}=\sqrt{2} . V_{\text {r.ms. }}$.
5. Formfactor $=\frac{\text { mbs value }}{\text { avg value over half a cycle }}$
6. $I_{\mathrm{ms}}=\frac{I_{0}}{\sqrt{2}}$
7. $\mathrm{t}=\frac{\mathrm{T}}{4}=\frac{1}{4 \mathrm{f}}$
8. $\mathrm{V}=\mathrm{V}_{\mathrm{m}} \sin _{\omega \mathrm{t}}$ compareto given equation, weget $\mathrm{V}_{\mathrm{m}}=240$ and $\omega=120$

$$
\mathrm{f}=\frac{\omega}{2 \pi}=\frac{120}{6.28}=19 \mathrm{H}_{2} \text { and }
$$

voltage $=\frac{V_{m}}{\sqrt{2}}=\frac{240}{\sqrt{2}}=170 \mathrm{~V}$
12. $i=i_{0} \sin \omega t$
$\omega=2 \pi f ; i_{0}=\frac{E_{0}}{R}=\frac{\sqrt{2} \times E_{\text {mb }}}{R}$
13. $E=E_{0} \cos \omega t, i=i_{0} \cos (2 \pi f t)$ but $i=\frac{i_{0}}{\sqrt{2}}$
14. $i_{\text {rmb }}=\frac{E_{\text {rmb }}}{X_{c}}$
15. $\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}=2 \pi \mathrm{fl}=2 \pi \times \frac{1000}{2 \pi} \times 2=2000 \Omega$
16. $\frac{N_{\mathrm{s}}}{N_{\mathrm{p}}}=\frac{\mathrm{I}_{\mathrm{p}}}{\mathrm{I}_{\mathrm{S}}}$
17. $\frac{N_{s}}{N_{p}}=\frac{V_{s}}{V_{p}}$
18. $f=\frac{1}{2 \pi \sqrt{L C}}$
19. $\cos \phi=\frac{\mathrm{R}}{\mathrm{Z}}$
20. Impedance, $Z=R+X_{C}+X_{L}$
$=(\sqrt{5 i}-7 j+9 j)=\sqrt{5} i+2 j$
$|Z|=\sqrt{5+4}=\sqrt{9}=3$
21. $\mathrm{V}_{\mathrm{rms}}=\sqrt{16^{2}+20^{2}}=\sqrt{656} \approx 25 . \mathrm{V}$
22.. Ans: (c)
$\mathrm{i}=5\left(\frac{3}{5} \sin \omega \mathrm{t}+\frac{4}{5} \cos \omega \mathrm{t}\right)=5 \sin (\omega \mathrm{t}+\delta)$
msvalueis $\frac{5}{\sqrt{2}}$
Mean valuecan not bedecided.
Herecurrent leads voltageso, it is RC circuit
23. Asinitiallychargeismaximum
$q=q_{0} \cos \omega t$
$\Rightarrow \mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}}=-\omega \mathrm{q}_{0} \sin \omega \mathrm{t}$
Given $\frac{1}{2} \mathrm{Li}^{2}=\frac{\mathrm{q}^{2}}{2 \mathrm{C}}$
$\Rightarrow \frac{1}{2} L\left(\omega \mathrm{q}_{0} \sin \omega \mathrm{t}\right)^{2}=\frac{\left(\mathrm{q}_{0} \cos \omega \mathrm{t}\right)^{2}}{2 \mathrm{C}}$
But, $\omega=\frac{1}{\sqrt{\mathrm{LC}}} \Rightarrow \tan \omega \mathrm{t}=1$
$\omega \mathrm{t}=\frac{\pi}{4} \quad \Rightarrow \mathrm{t}=\frac{\pi}{4 \omega}=\frac{\pi}{4} \sqrt{\mathrm{LC}}$

LEVEL-I (H.W)

INSTANTANEOUS, PEAK,R.M.S \& AVERAGE VALUES OF A.C AND A.V

1. The average current of a sinusoidally varrying alternating current of peak value 5 A with initial phase zero, between the instants $t=T / 8$ to $t=$ $\mathrm{T} / 4$ is (W here' T ' istime period)
1) $\frac{10}{\pi} \sqrt{2} A$
2) $\frac{5}{\pi} \sqrt{2} A$
3) $\frac{20 \sqrt{2}}{\pi} \mathrm{~A}$
4) $\frac{10}{\pi} \mathrm{~A}$
A.C ACROSS L-R, L-C \& L-C-R SERIES CIRCUITS
2. A 100Ω resistance is connected in series with a 4H inductor. The voltage across the resistor is $\mathrm{V}_{\mathrm{R}}=2 \sin (1000 \mathrm{t}) \mathrm{V}$. The voltage across the inductor is
1) $80 \sin \left(1000 t+\frac{\pi}{2}\right)$
2) $40 \sin \left(1000 t+\frac{\pi}{2}\right)$
3) $80 \sin \left(1000 t-\frac{\pi}{2}\right)$
4) $40 \sin \left(1000 t-\frac{\pi}{2}\right)$
3. The reading of voltmeter and ammeter in the following figure will respectively be

1) 0 and $2 A$
2) 2 A and $O V$
3) $2 V$ and $2 A$
4) $O V$ and $O A$
4. In the following circuit, the values of current flowing in the circuit at $f=0$ and $f=\infty$ will respectively be

1) 8 A and 0 A
2) $O A$ and $O A$
3) 8 A and 8 A
4) $O A$ and $8 A$
5. In the series L-C-R circuit figure the voltmeter and ammeter readings are

1) $V=100$ volt, $I=2 \mathrm{~A}$
2) $V=100$ volt, $I=5 \mathrm{~A}$
3) $V=1000$ volt, $I=2 \mathrm{~A}$
4) $V=300$ volt, $I=1 \mathrm{~A}$
6. The potential difference between the ends of a resistance R is V_{R}, between the ends of capacitor is $V_{c}=2 V_{R}$ and between the ends of inductance is $V_{L}=3 V_{R}$. Then the alternating potential of the source in terms of V_{R} will be
1) $\sqrt{2} V_{R}$
2) V_{R}
3) $\frac{V_{R}}{\sqrt{2}}$
4) $5 V_{R}$
7. A $220 \mathrm{~V}, 50 \mathrm{~Hz}$ a.c. generator is connected to an inductor and a 50Ω resistance in series. The current in the circuit is 1.0A. The P.D. across inductor is
1) 102.2 V
2) 186.4 V
3) 213.6 V
4) 302 V
8. The figure shows variation of R, X_{L} and X_{C} with frequenc fin a series L, C, R circiut. Then for what frequency point, thecirciut is inductive

1) A
2) B
3) C
4) All points
9. A constant voltage at different frequencies is applied across a capacitanceC asshown in the figure. W hich of the following graphs correctly depicts the variation of current with frequency

1)

2)

3)

4)

10. In a series $L-C-R$ circuit $R=200 \Omega$ and the voltage and the frequency of the main supply is 220 V and 50 Hz respectively. 0 n taking out the capacitance from the circuit the current lags behind the voltage by 30°. On taking out theinductor from the circuit thecurrent leads the voltage by 30°. The power dissipated in the $L-C-R$ circuit is

1) 305 W
2) 210 W
3) zero
4) 242 W
11. In a series resonant LCR circuit, the voltage across R is 100 V and $\mathrm{R}=1 \mathrm{k} \Omega$ with $\mathrm{C}=2 \mu \mathrm{~F}$. The resonant frequency ω is $200 \mathrm{rad} / \mathrm{s}$. At resonance the voltage across L is
1) $2.5 \times 10^{-2} \mathrm{~V}$
2) 40 V
3) 250 V
4) $4 \times 10^{-3} \mathrm{~V}$

LEVEL-II (C.W)-KEY
$\begin{array}{lllllll}\text { 1) } 1 & \text { 2) } 1 & \text { 3) } 1 & \text { 4) } 2 & \text { 5) } 1 & \text { 6) } 1 & \text { 7) } 3\end{array}$
8) $3 \quad$ 9) $2 \quad 10) 4 \quad 11) 2$

LEVEL-II (C.W) - HINTS

1. $\langle\mathrm{i}\rangle=\frac{\int_{T / 8}^{T / 4} \mathrm{idt}}{\int_{T / 8}^{T / 4} \mathrm{dt}}$
2. $\mathrm{i}=\frac{\left(\mathrm{V}_{0}\right)_{\mathrm{R}}}{\mathrm{R}}, \mathrm{V}_{\mathrm{L}}=\left(\mathrm{V}_{0}\right)_{\mathrm{L}} \sin \left(\omega t+\frac{\pi}{2}\right) \operatorname{and}\left(\mathrm{V}_{0}\right)_{\mathrm{L}}=\mathrm{X}_{\mathrm{L}} \mathrm{i}$
3. $I_{\text {ms }}=\frac{E_{\text {ms }}}{R}=2 A ; V_{\text {ms }}=I_{m s}\left(X_{L}-X_{C}\right)=0$
\therefore circuit is at resonance
4.

$$
I=\frac{E}{Z}=\frac{E}{\sqrt{R^{2}+\left[2 \pi f L-\frac{1}{2 \pi f C}\right]^{2}}}
$$

5. $\quad I_{\text {r.ms. }}=\frac{V_{\text {r.m.s. }}}{Z}=\frac{V_{\text {r.m.s. }}}{R}=\frac{100}{50}=2 \mathrm{~A}$

$$
V=\sqrt{V_{R}^{2}+\left(V_{L}-V_{C}\right)^{2}}
$$

6. $\bar{V}_{S}=\overline{V_{B}}+\overline{V_{C}}+\overline{V_{L}}=V_{R} \hat{i}-2 V_{R} \hat{j}+3 V_{R} \hat{j}$
$=V_{R} \hat{i}+V_{R} \hat{j},|\bar{V}|=\sqrt{2} V_{R}$
7. $\mathrm{I}=\frac{\mathrm{E}}{\mathrm{Z}}, \therefore \mathrm{I}=\frac{220}{\mathrm{Z}}, \mathrm{Z}=220 \Omega$

$$
\begin{aligned}
& \mathrm{Z}^{2}=\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}^{2} \quad \therefore \mathrm{X}_{\mathrm{L}}=\sqrt{\mathrm{Z}^{2}-\mathrm{R}^{2}} \\
& \mathrm{~L}=\frac{1}{\omega} \sqrt{\mathrm{Z}^{2}-\mathrm{R}^{2}} \quad \therefore \mathrm{~L}=\frac{1}{2 \pi \mathrm{f}} \sqrt{\mathrm{Z}^{2}-\mathrm{R}^{2}}=0.68 \mathrm{H}
\end{aligned}
$$

$$
\therefore \mathrm{V}_{\mathrm{L}}=\omega \mathrm{LI}=2 \pi \times 0.5 \times 0.68 \times 1=213.6 \mathrm{~V}
$$

8. AtA: $X_{C}>X_{L} ; A t B: X_{C}=X_{L} ; A t C: X_{C}<X_{L}$
9. For capacitivecircuits $X_{C}=\frac{1}{\omega \mathrm{C}}$
$\therefore \mathrm{i}=\frac{\mathrm{V}}{\mathrm{X}_{\mathrm{c}}} \mathrm{V} \omega \mathrm{C} \Rightarrow \mathrm{i} \propto \omega$
10. Thegivencircuit is under resonanceas $X_{L}=X_{C}$ Hence, power dissipatedinthecircuit is

$$
P=\frac{V^{2}}{R}=242 \mathrm{~W}
$$

11. At resonance, $\omega \mathrm{L}=\frac{1}{\omega \mathrm{C}}$ current flowingthroughthecircuit $I=\frac{V_{R}}{R}=\frac{100}{1000}=0.1 \mathrm{~A}$
So, voltageacross Lisgivenby
$\mathrm{V}_{\mathrm{L}}=I \mathrm{X}_{\mathrm{L}}=\mathrm{I} \omega \mathrm{L} \quad$ but $\omega \mathrm{L}=\frac{\mathrm{I}}{\omega}$
$V_{1}=\frac{1}{\omega \mathrm{C}}=\frac{0.1}{200 \times 2 \times 10^{-6}}=250 \mathrm{~V}$
