For More Study Material

For Class 9 Science	$\underline{\text { Click here }}$
For Class 9 Mathematics	$\underline{\text { Click here }}$
For Class 10 Science	$\underline{\text { Click here }}$
For Class 10 Mathematics	$\underline{\text { Click here }}$
For Class 11 Physics	$\underline{\text { Click here }}$
For Class 11 Chemistry	$\underline{\text { Click here }}$
For Class 11 Biology	$\underline{\text { Click here }}$
For Class 11 mathematics	$\underline{\text { Click here }}$
For Class 12 Physics	$\underline{\text { Click here }}$
For Class 12 Chemistry	$\underline{\text { Click here }}$
For Class 12 Biology	$\underline{\text { Click here }}$
For Class 12 Mathematics	

ELECTRIC CURRENT AND DRIFT VELOCITY

1. If n, e, τ, m, are representing electron density, charge, relaxation time and mass of an electron respectively then the resistance of wire of length I and cross sectional area A is given by
1) $\frac{\mathrm{ml}}{\mathrm{ne}^{2} \tau A}$
2) $\frac{2 m A}{n e^{2} \tau}$
3) $n e^{2} \tau A$
4) $\frac{n e^{2} \tau A}{2 m}$
2. Among the following dependences of drift velocity V_{d} on electric field E , Ohm's Law obeyed is
1) $v_{d} \alpha E$
2) $v_{d} \alpha E^{2}$
3) $v_{d} \alpha \sqrt{E}$
4) $v_{d}=$ constant
3. A steady current is passing through a linear conductor of nonuniform cross-section. The net quantity of charge crossing any cross section per second is
1) independent of area of cross-section
2) directly proportional to the length of the conductor
3) directly proportional to the area of cross section.
4) inversely proportional to the area of the conductor
4. Given a current carrying wire of non-uniform cross section. Which of thefollowing quantity or quantities are constant throughout the length of the wire?
1) current, electric field and drift speed
2) drift speed only
3) current and drift speed
4) current only
5. When electric field (\vec{E}) is applied on the ends of a conductor, the free electrons starts moving in direction
1) similar to \vec{E}
2) Oppositeto \vec{E}
3) Perpendicular to \vec{E}
4) Cannot be predicted
6. The drift speed of an electron in a metal is of the order of
1) $10^{-13} \mathrm{~m} / \mathrm{s}$
2) $10^{-3} \mathrm{~mm} / \mathrm{s}$
3) $10^{-4} \mathrm{~m} / \mathrm{s}$
4) $10^{-30} \mathrm{~m} / \mathrm{s}$
7. In metals and vacuum tubes charge carriers are
1) electrons
2) protons
3) both
4) positrons
8. The electric intensity E, current density jand conductivity σ arerelated as:
1) $j=\sigma E$
E2) $j=E / \sigma$
2) $\mathrm{jE}=\sigma$

$$
\text { 4) } j=\sigma^{2} E
$$

9. Electric field (E) and current density (J) have relation
1) $E \propto J^{-1}$
2) $E \propto J$
3) $E \propto \frac{1}{J^{2}}$
4) $E^{2} \propto \frac{1}{J}$
10. Assertion : A current flows in a conductor only when there is an electric field within the conductor.
Reason : The drift velocity of electron in presence of electric field decreases.
1) Both (A) and (R) aretrueand (R) isthecorrect explanation of A.
2) Both (A) and (R) are true but (R) is not the correct explanationof A.
3) (A) istruebut (R) is false
4) (A) is falsebut (R) istrue

$$
\begin{aligned}
& \text { OHM'S LAW \& FACTORS } \\
& \text { EFFECTING RESISTANCE }
\end{aligned}
$$

11. In an electric circuit containg a battery, the charge (assumed positive) inside the battery
1) al ways goes formthepositive terminal to the negative teminal
2) may movefromthepositive terminal to the negative teminal
3) always goes fromthenegative terminal to the
positive terminal
4) does not move.
12. From the following the quantity which is analogous to temperature in electricity is
1) potential
2) resistance
3) current
4) charge
13. The flow of the electric current through a metallic conductor is
1) only dueto dectrons
2) only dueto +vecharges
3) dueto both nuclei and electrons.
4) cannot bepredicted.
14. For making standard resistance, wire of following material is used
1) Nichrome
2) Copper
3) Silver
4) manganin
15. M aterial used for heating coils is
1) Nichrome
2) Copper
3) Silver
4) Manganin
16. A piece of silver and another of silicon areheated from room temperature. Theresistance of
1) each of themincreases
2) each of them decreeses
3) Silver increases and Silicon decreases
4) Silver decreases and Silicon increases
17. i-v graph for a metal at temperatures $\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}$ are as shown. Thehighest temperature is

1) t_{1}
2) t_{2}
3) t_{3}
4) $t_{1}=t_{2}=t_{3}$
18. A certain piece of copper is to be shaped into a conductor of minimum resistance. Its length and cross sectional area should be
1) L and A
2) $2 L$ and $A / 2$
3) $L / 2$ and $2 A$
4) $3 L$ and $A / 3$
19. When light falls on semiconductors, their resistance
1) decreases
2) increases
3) does not change
4) can't be predicted
20. With the increase of temperature, the ratio of conductivity to resistivity of a metal conductor
1) Decreases
2) Remains same
3) Increases
4) May increaseor decrease
21. The conductivity of a super conductor, in the super conducting state is
1) Zero
2) Infinity
3) Depends ontemp
4) Dependsonfreedection
22. When a piece of aluminium wireof finitelength is drawn through a series of dies to reduce its diameter to half its original value, its resistance will become
1) Twotimes
2) Four times
3) Eighttimes
4) Sixteentimes
23. M etals have
1) Zero resistivity
2) Highresistivity
3) Low resistivity
4) Infiniteresistivity
24. C onsider a rectangular slab of length L, and area of cross-section A. A current I is passed through it, if the length isdoubled the potential drop across the end faces
1) Becomes half of theinitial value
2) Becomes oneforth of theinitial value
3) Becomesdoubletheinitial value
4) Remains Same
25. A metallic block has no potential difference applied across it, then the mean velocity of free electrons is ($T=$ absolute temperature of the block)
1) Proportional to T
2) Proportional to \sqrt{T}
3) Zero
4) Finitebutindependent of temperature.
26. The resistance of a metal increases with increasing temperature because
1) The collisions of the conducting electrons with the electrons increases.
2) The collisions of the conducting electrons withthelatticeconsisting of theions of themetal increases
3) The number of the conduction electrons decreases.
4) Thenumber of conduction electrons increase
27. In the absence of applied potential, the electric current flowing through a metallic wire is zero because
1) The average velocity of electron is zero
2) Theelectrons aredrifted in randomdirection with a speed of the order of $10^{-2} \mathrm{~cm} / \mathrm{s}$.
3) The electrons move in random direction with a speed of the order close to that of velocity of light.
4) Electrons and ions move in opposite direction.
28. A long constan wire is connected across the terminals of an ideal battery, if the wire is cut in to two equal pieces and one of them is now connected to the same battery, what will be the mobility of free electrons now in the wire compared to that in the first case?
1) same as that of previous value
2) double that of previous value
3) half that of previous value
4) four times that of previous value
29. O hm'slaw is not applicable for
1) insulators
2) semi conductors
3) vaccumtube
4) all the above
30. V-I graphs for two materials is shown in the figure. Thegraphs are drawn at two different temperatures.

1) $T_{1}-T_{2} \propto \cot 2 \theta$
2) $T_{1}-T_{2} \propto \sin 2 \theta$
3) $T_{1}-T_{2} \propto \tan 2 \theta$
4) $T_{1}-T_{2} \propto \cos 2 \theta$
31. W ires of Nichrome and Copper of equal dimensions are connected in series in electrical circuit. Then
1) Morecurrent will flow in copper wire
2) Morecurrent will flow inNichromewire
3) Copper wirewill get heated more
4) Nichromewirewill get heated more
32. At absolute zero silver wire behaves as
1) Super conductor
2) Semi conductor
3) Perfect insulator
4) Semi insulator
33. F use wire is a wire of
1) low melting point and low valueof α
2) highmelting pointand high valueof α
3) highmelting point and low value of α
4) low melting point and high valueof α
34. A ssertion : M aterial used in the construction of a standard resistance is constantan or manganin.
R eason : Temperature coefficient of constantan is very small.
1) Both (A) and (R) aretrueand (R) isthecorrect explanation of A.
2) Both (A) and (R) are true but (R) is not the correct explanation of A.
3) (A) istruebut (R) isfalse
4) (A) isfalsebut (R) istrue
35. A ssertion (A) : B ending of a conducting wire effects electrical resistance.
R eason (R) : R esistance of a wire depends on resistivity of that material.
1) Both (A) and (R) aretrueand (R) isthecorrect explanation of A.
2) Both (A) and (R) are true but (R) is not the correct explanationofA.
3) (A) istruebut (R) isfalse
4) (A) isfalsebut (R) istrue
36. A ssertion (A) : When the radius of a copper wire is doubled, its specific resistance gets increased.
R eason (R):Specific resistance is independent of cross-section of material used
1) Both (A) and (R) aretrueand (R) isthecorrect explanation of A.
2) Both (A) and (R) are true but (R) is not the correct explanation of A.
3) (A) istruebut (R) isfalse
4) (A) isfalsebut (R) istrue
THERMISTOR
37. The thermistors areusually made of
1) metals with low temperature coefficient of resistivity
2) metals with high temperature coefficient of resistivity.
3) metal oxideswithhightemperaturecoefficient of resistivity
4) semiconductingmaterialshaving
low temperaturecoefficient of resistivity
38. For a chosen non-zero value of voltage, there can be more than one value of current in
1) copper wire
2) thermistor
3) zener diode
4) manganinwire
39. A heater coil is cut into two equal parts and only one part is used in the heater. Then the heat generated becomes
1) becomeonefourth
2) halved
3) doubled4) becomefour times
40. Two lamps have resistance r and R, R being greater than r. If they areconnected in parallel in an electric circuit, then
1) the lamp with resistance R will shine more brightly
2) thelamp withresistancer will shinemorebrightly
3) thetwo lamps will shineequal brightly
4) the lamp with resistance R will not shineat all
41. Two bulbs arefitted in a room in the domestic electric installation. If one of them glows brighter than the other, then
1) thebrighter bulbhassmaller resistance
2) thebrighter bulbhaslarger resistance
3) boththebulbs havethe sameresistance
4) nothing can besaid about theresistanceunless other factorsareknown
42. Threeidentical bulbs P, Q and R areconnected to a battery as shown in thefigure. W hen the circuit is closed

1) Q and R will bebrighter than P
2) Q and R will bedimmer than P
3) All the bulbs will beequally bright
4) Q and R will not shineat all
43. Figure shows three similar lamps $\mathbf{L}_{1}, L_{2}, L_{3}$ connected across a power supply. If the lamp L_{3} fuses. The light emitted by L_{1} and L_{2} will change as

1) no change
2) brilliance of L_{1} decreases and that of L_{2} increases
3) brilliance of both L_{1} and L_{2} increases
4) brilliance of both L_{1} and L_{2} decreases
44. The potential difference across a conductor is doubled, the rate of generation of heat will
1) become onefourth
2) behalved
3) bedoubledtimes
4) becomefour times
45. Two metallic wires of same material and same length have different diameters. When the wires areconnected in parallel across an ideal battery the rate of heat produced in thinner wire is Q_{1} and that in thicker wire is Q_{2}. The correct statement is
1) $Q_{1}=Q_{2}$
2) $Q_{1}<Q_{2}$
3) $Q_{1}>Q_{2}$
4) It will depend on theerff of thebattery
46. Thereare two metalic wires of same material, same length but of different radii. W hen these are connected to an ideal battery in series, heat produced is H_{1} but when connected in paralle, heat produced is H_{2} for the sametime. Then the correct statement is
1) $\mathrm{H}_{1}=\mathrm{H}_{2}$
2) $\mathrm{H}_{1}<\mathrm{H}_{2}$
3) $\mathrm{H}_{1}>\mathrm{H}_{2}$
4) Noreation
47. Two electric bulbs rated P_{1} watt and V volt, are connected in series, across V -volt supply. Thetotal power consumed is
1) $\frac{P_{1}+P_{2}}{2}$
2) $\sqrt{P_{1} \cdot P_{2}}$
3) $\frac{P_{1} \cdot P_{2}}{P_{1}+P_{2}}$
4) $\left(P_{1}+P_{2}\right)$
48. In abovequestion, if the bulbs are connected in parallel, total power consumed is
1) $\frac{P_{1}+P_{2}}{2}$
2) $\sqrt{P_{1} \cdot P_{2}}$
3) $\frac{P_{1} \cdot P_{2}}{P_{1}+P_{2}}$
4) $\left(P_{1}+P_{2}\right)$
49. Which of the following causes production of heat, when current is set up in a wire
1) Fall of electronfromhigher orbitsto lower orbits 2)Inter atomic collisions
3)Inter electron collisions
4)Collisions of conduction electrons with atoms
50. A constant voltage is applied between the two ends of a metallic wire. If both the length and the radius of the wire are doubled, the rate of heat developed in the wire
1) will bedoubled
2) will behalved
3) will remain thesame
4) will bequadrupled
51. A resistor R_{1} dissipates the power P when connected to a certain generator. If the resistor \mathbf{R}_{2} is put in series with \mathbf{R}_{1}, the power dissipated by R_{1}
1) Decreases
2) Increases
3) Remainsthesame
4) Any of the above depending upon the reative values of R_{1} and R_{2}

CELL-INTERNAL RESISTANCE EMF
52. Back emf of a cell is due to

1) Electrolytic polarization
2) Petier effect
3) Magnetic effect of current
4) Intemal resistance
53. The direction of current in a cell is
1) (-) vepoleto (+) vepoleduring discharging
2) (+) vepoleto (-) vepoleduring discharging
3) Always (-) vepoleto (+) vepole
4) alwaysflowsfrom(+)veploeto(-) vepole
54. When an electric cell drives current through load resistance, its Back emf,
1) Supportstheoriginal enf
2) Opposestheoriginal enf
3) Supportsif internal resistance islow
4) Opposesif load resistanceislarge
55. The terminal voltage of a cell is greater than its emf. when it is
1) being charged
2) anopencircuit
3) being discharged
4) it never happens
56. What is constant in a battery (also called a source of emf) ?
1) currentsuppliedby it
2) terminal potential difference
3) intemal resistance
4) eff
57. From the following the standard cell is
1) Danie cell
2) Cadmiumcell
3) Ledanchecell
4) Leadaccumulator
58. A cell is to convert
1) cherical energy into electrical energy
2) electrical energy into cherical energy
3) heat energy into potentide energy
4) potential energy into heatenergy
59. ' n ' identical cells, each of internal resistance (\mathbf{r}) are first connected in parallel and then connected in series across a resistance (\mathbf{R}). If the current through \mathbf{R} is the same in both cases, then
1) $R=r / 2$
2) $r=R / 2$
3) $R=r$
4) $r=0$
60. The value of internal resistance of ideal cell is
1) Zero
2) infinite
3) 1Ω
4) 2Ω
61. In a circuit two or more cells of the sameemf are connected in parallel in order
1) Increses thepd acrossaresistancein theciruit
2) Decreeses pdacross a resistancein the circuit
3) Facilitate drawing more current from the batterysystem
4) Changetheerff across thesystemof batteries
62. The resistance of an open circuit is
1) Infinity
2) Zero
3) Negative
4) carn't bepredicted
63. According to joule's law if potential difference across a conductor having a material of specific resistance ρ, remains constant, then heat produced in the conductor is directly proportional to
1) ρ
2) ρ^{2}
3) $\frac{1}{\sqrt{\rho}}$
4) $\frac{1}{\rho}$
64. Internal resistance of a cell depends on
1) concentration of electrolyte
2) distance between the electrodes
3) area of electrode
4) all the above
65. When cells are arranged in series
1) the current capacity decreases
2) The current capacity increases
3) theemf increases
4) the erf decreases
66. To supply maximum current, cells should be arrange in
1) series
2) paralled
3) Mixed grouping
4) depends on theinternal and extemal resistance
67. The terminal Pd of a cell is equal to its emf if
1) external resistance is infinity
2) internal resistance is zero
3) both 1 and 2
4) internal resistance is 5Ω
68. The electric power transfered by a cell to an external resistance is maximum when the external resistance is equal to ...(r internal resistance)
1) $\frac{r}{2}$
2) $2 r$
3) r
4) r^{2}
69. Which depolarizers are used to neutralizes hydrogen layer in cells
1) Potassiumdichromite2) Manganesedioxide
2) 1 or 2
3) hydrogen peroxide
70. Assertion : Series combination of cells is used when their internal resitanceis much smaller than the external resistance.

Reason: $I=\frac{n \varepsilon}{R+n r}$ where the symbols have their standard meaning,in series connection 1) Both (A) and (R) aretrueand (R) isthe correct explanation ofA.
2) Both (A) and (R) are true but (R) is not the correct explanation of A.
3) (A) istruebut (R) isfalse
4) (A) isfalsebut (R) istrue
71. A ssertion (A) : To draw more current at low P.d; parallel connection of cells is preferred. Reason (R) : In parallel connection, current $i=\frac{n E}{r}$, if $r \gg R$.

1) Both (A) and (R) aretrueand (R) is thecorrect explanation ofA.
2) Both (A) and (R) are true but (R) is not the correct explanation of A.
3) (A) is true but (R) is false
4) (A) is false but (R) is true

KIRCHHOFF'S LAWS WHEATSTONE BRIDGE

72. K irchoff's law of meshesis in accordance with law of conservation of
1) charge
2) current
3) energy
4) angular momertum
73. Kirchoff's law of junctions is also called the law of conservation of
1) energy
2) charge
3) momentum
4) angular momentum
74. W heatstones's bridge cannot be used for measurement of very --ー resistances.
1) high
2) low
3) low(or) high
4) zero
75. In a balanced W heatstone's network, the resistances in the arms Q and S are interchanged. As a result of this:
1) gal vanometer and thecell must beinterchanged to balance
2) galvanometer shows zero deflection
3) network is not balanced
4) network is still balanced
76. If galvanometer and battery are interchanged in balanced wheatstone bridge, then
1) thebattery discharges
2) thebridgestill balances
3) thebal ancepoint is changed
4) thegalvanometer isdamaged duetoflow of high current
77. W heatstone bridge can be used
1) To comparetwo unknown resistances.
2) to meesuresmall strains producedinhardmetals
3) as the working principleof meterbridge
4) All theabove
78. In a wheatstone's bridge three resistances P, Q, R connected in three arms and the fourth arm is formed by two resitances $S_{1} S_{2}$ connected in parallel. The condition for bridgeto bebalanced will be
1) $\frac{P}{Q}=\frac{R}{S_{1}+S_{2}}$
2) $\frac{P}{Q}=\frac{2 R}{S_{1}+S_{2}}$
3) $\frac{P}{Q}=\frac{R\left(S_{1}+S_{2}\right)}{S_{1} S_{2}}$
4) $\frac{P}{Q}=\frac{R\left(S_{1}+S_{2}\right)}{2 S_{1} S_{2}}$
79. Assertion : At any junction of a network, algebraic sum of various currents is zero
Reason : At steady state there is no accumulation of charge at the junction.
1) Both (A) and (R) are true and (R) is the correct explanation of A.
2) Both (A) and (R) are true but (R) is not the correct explanation of A.
3) (A) is true but (R) is false
4) (A) is false but (R) is true

METERBRIDGE

80. M etal wire is connected in the left gap, semi conductor is connected in the right gap of meter bridge and balancing point is found. Both areheated so that change of resistances in them are same. Then the balancing point
1) will not shift
2) shifts towards left
3) shifts towards right
4) depends on rise of temperature
81. A metre bridge is balanced with known resistance in the right gap and a metal wire in the left gap. If the metal wire is heated the balancepoint.
1) shiftstowards left
2) shifts towards right
3) does not change
4) may shift towards left or right depending on thenature of themetal.
82. In metre bridge experiment of resistances, the known and unknown resistances are interchanged. The error so removed is
1) end correction
2) index error
3) dueto temperatureeffect
4) randomerror
83. In a metre-bridge experiment, when the resistances in the gaps are interchanged, the balance-point did not shift at all. Theratio of resistances must be
1) Very large
2) Very small
3) Equal to unity
4) zero
84. A ssertion (A) : M eterbridge wire is made up of manganin
Reason (R) : The temperature coeffiecient of resistance is very small for manganin
1) Both (A) and (R) are true and (R) is the correct explanation of A.
2) Both (A) and (R) are true but (R) is not the correct explanation of A.
3) (A) is true but (R) is false
4) (A) is false but (R) is true

POTENTIOMETER

85. A potentiometer is superior to voltmeter for measuring a potential because
1) voltmeter has high resistance
2) resistance of potentiometer wire is quitelow
3) potentiometer does not draw any current from the unknown source of enf. to bemeasured.
4) sensitivity of potentiometer is higher than that of a voltmeter.
86. In comparing emf's of 2 cells with the help of potentiometer, at the balance point, the current flowing through the wireistaken from
1) Any one of these cells.
2) both of these cells
3) Battery in the primary circuit
4) Fromanunknown source
87. A potentiometer wire is connected across the ideal battery now, the radius of potentiometer wire is doubled without changing its length. The valueof potential gradient
1) increases 4 times
2) increasestwo times
3) Does not change
4) becomes half
88. In a potentiometer of ten wires, the balance point is obtained on the sixth wire. To shift the balance point to eighth wire, we should
1) increase resistance in the primary circuit.
2) decrease resistance in the primary circuit.
3) decreaseresistancein series with thecell whose enf. hasto bemeasured.
4) increaseresistancein serieswiththecell whose enf. hasto bemeasured.
89. If the emf of the cell in the primary circuit is doubled, with out changing the cell in the secondary circuit, the balancing length is
1) Doubled
2) Halved
3) Uncharged
4) Zero
90. The potential gradients on the potentiometer wire are V_{1} and V_{2} with an ideal cell and a real cell of same emf in the primary circuit then
1) $V_{1}=V_{2}$
2) $V_{1}>V_{2}$
3) $\mathrm{V}_{1}<\mathrm{V}_{2}$
4) $V_{1} \leq V_{2}$
91. If the current in the primary circuit is decreased, then balancing length is obtained at
1) Lower length
2) Higher length
3) Samelength
4) $1 / 3 r d$ length
92. Temperature coefficient of resistance ' α ' and resistivity ' ρ ' of a potentiometer wire must be
1) high and low
2) low and high
3) low and low
4) high and high
93. A series high resistance is preferable than shunt resistance in the galvanometer circuit of potentiometer. Because
1) shunt resistances are costly
2) shunt resistance damages the gal vanometer
3) series resistancereduces the current through galvanometer in an unbalanced circuit
4) high resistances are easily available
94. The sensitivity of potentiometer wire can be increased by
1) decreasing thelength of potentiometer wire
2) increasing potential gradient on its wire
3) increasing enf of battery inthe primary circuit
4) decreasing the potential gradient on its wire
95. A cell of emf ' E ' and internal resistance ' r ' connected in the secondary gets balanced against length ' ℓ ' of potentiometer wire. If a resistance ' R ' is connected in parallel with the cell, then the new balancing length for the cell will be
1) $\left(\frac{R}{R-r}\right)$ l
2) $\left(\frac{R-r}{R}\right)$ |
3) $\left(\frac{R}{r}\right)$
4) $\left(\frac{R}{R+r}\right)$ l
96. Potentiometer is an ideal instrument, because 1) no current is drawnfromthesourceof urknown eff
2) current is drawn fromthesource of unknown erf
3) it gives deflectionevenatnull point
4) it has variable potential gradient
97. On increasing the resistance of the primary circuit of potentiometer, its potential gradient will
1) becomemore
2) become less
3) not change
4) become infinite
98. If thevalueof potential gradient on potentiometer wire is decreased, then the new null point will be obtained at
1) lower length
2) higher length
3) samelength
4) nothing can be said
99. A cell of negligible internal resistance is connected to a potentiometer wire and potential gradient is found. K eeping the length as constant, if the radius of potentiometer wire is increased four times, the potential gradient will become (no series resistancein primary)
1) 4 times
2) 2 times 3) half
3) constant
100. For theworking of potentiometer, theemf of cell in the primary circuit (E) compared to theemf of the cell in the secondary circuit (E^{1}) is
1) $E>E^{1}$
2) $E<E^{1}$
3) Both theabove
4) $E=E^{1}$
101. The balancing lengths of potentiometer wire are I_{1} and I_{2} when two cells of emf E_{1} and E_{2} are connected in the secondary circuit in series first to help each other and next to oppose each other $\frac{E_{1}}{E_{2}}$ is equal to ($E_{1}>E_{2}$).
1) $\frac{l_{1}}{l_{2}}$
2) $\frac{I_{1}-I_{2}}{I_{1}+I_{2}}$
3) $\frac{I_{1}+I_{2}}{I_{1}-I_{2}}$
4) $\frac{l_{2}}{l_{1}}$
102. At the moment when the potentiometer is balanced,
1) Current flows only in the primary circuit
2) Currentflows only inthesecondary circuit
3) Current flows both in primary and secondary circuits
4) current does not flow in any circuit
103. The quantity that cannot be measured by a potentiometer is \qquad
1) Resistance
2) exf
3) current inthewire 4) Inductance
104. Assertion: Potentiometer is much better than a voltmeter for measuring emf of cell
Reason : A potentiometer draws no current while measuring emf of a cell
1) Both (A) and (R) are true and (R) is the correct explanation of A.
2) Both (A) and (R) are true but (R) is not the correct explanation of A.
3) (A) is true but (R) is false
4) (A) is false but (R) is true
105. A : The emf of the cell in secondary circuit must be less than emf of cell in primary circuit in potentiometer.
R: Balancing length cannot be more than length of potentiometer wire.
1) Both (A) and (R) are true and (R) is the correct explanation of A.
2) Both (A) and (R) are true but (R) is not the correct explanation of A.
3) (A) is true but (R) is false
4) (A) is false but (R) is true
C.U.QKEY

1) 1	2) 1	3) 1	4) 4	5) 2	6) 3
7) 1	8) 1	9) 2	10) 3	11) 2	12) 1
13) 1	14) 4	15) 1	16) 3	17) 1	18) 3
19) 1	20) 1	21) 2	22) 4	23) 1	24) 3
25) 3	26) 2	27) 1	28) 1	29) 4	30) 1
31) 4	32) 1	33) 4	$34) 1$	35) 2	$36) 4$
37) 3	38) 2	39) 3	40) 2	41) 1 42) 2	
43) 2	44) 4	45) 2	46) 2	47) 3	48) 4
49) 4	50) 1	51) 1	52) 1	53) 1	54) 2
55) 1	56) 4	57) 2	58) 1	59) 3	60) 1
61) 3	62) 1	63) 4	64) 4	65) 3	66) 4
67) 3	68) 3	69) 3	70) 1	71) 1	72) 3
73) 2	74) 2	75) 3	76) 2	77) 4	78) 3
79) 1	80) 3	81) 2	82) 1	83) 3	84) 1
85) 3	86) 3	87) 3	88) 1	89) 2	90) 2
91) 2	92) 2	93) 3	94) 4	95) 4	96) 1
97) 2	98) 2	99) 4	100) 1	101) 102$) 1$	
103) 4	104) 105$) 1$				

ELECTRIC CURRENT \& DRIFT VELOCITY

1. If the electron in a Hydrogen atom makes 6.25×10^{15} revolutions in one second, the current is
1) 1.12 mA
2) 1 mA
3) 1.25 mA
4) 1.5 mA
2. The current through a wire connected to a condenser varies with time as $\mathrm{i}=(2 \mathrm{t}+1) \mathrm{A}$ The charge transport to the condenser from $t=0$ to $t=5 s$ is
1) 5 C
2) 55C
3) 30 C
4) 60 C
3. A copper wire of cross-sectional area 2.0 mm^{2}, resistivity $=1.7 \times 10^{-8} \Omega \mathrm{~m}$, carries a current of 1A. The electric field in the copper wire is
1) $8.5 \times 10^{-5} \mathrm{~V} / \mathrm{m}$
2) $8.5 \times 10^{-4} \mathrm{~V} / \mathrm{m}$
3) $8.5 \times 10^{-3} \mathrm{~V} / \mathrm{m}$
4) $8.5 \times 10^{-2} \mathrm{~V} / \mathrm{m}$

OHM'S LAW AND COMBINATION OF RESISTANCES
4. Using three wires of resistances $1 \mathrm{ohm}, 20 \mathrm{hm}$ and 3 ohm , then no.of different values of resistances that possible are

1) 6
2) 4
3) 10
4) 8
5. Six resistances of each 12 ohm are connected as shown in the fig. The effective resistance between the terminals A and B is

1) 8Ω
2) 6Ω
3) 4Ω
4) 12Ω
6. C urrent ' i ' coming from the battery and ammeter reading are

1) $\frac{3}{8} \mathrm{~A}, \frac{1}{8} \mathrm{~A}$
2) $\frac{1}{8} \mathrm{~A}, \frac{1}{8} \mathrm{~A}$
3) $2 \mathrm{~A}, \frac{2}{3} \mathrm{~A}$
4) $2 \mathrm{~A}, \frac{1}{8} \mathrm{~A}$
7. In the circuit shown, the reading of the voltmeter and the ammeter are

1) $4 \mathrm{~V}, 0.2 \mathrm{~A}$
2) $2 \mathrm{~V}, 0.4 \mathrm{~A}$
3) $3 \mathrm{~V}, 0.6 \mathrm{~A}$
4) $4 \mathrm{~V}, 0.04 \mathrm{~A}$
8. The resistance of a wire of 100 cm length is 10Ω. Now, it is cut into 10 equal parts and all of them aretwisted to form a singlebundle. Its resistance is
1) 1_{Ω}
2) 0.5Ω
3) 5Ω
4) 0.1_{Ω}
9. A metallic wire of resistance 20 ohm stretched until its length is doubled. Its resistance is
1) 20Ω
2) 40Ω
3) 80Ω
4) 60Ω
10. A wire of resistance 20Ω is bent in the form of a square. The resistance between the ends of diagonal is
1) 10Ω
2) 5Ω
3) 20Ω
4) 15Ω
11. Resistance of each 10Ω are connected as shown in the fig. The effective resistance betweeen A and G is

1) 16Ω
2) 20Ω
3) 12Ω
4) 8Ω
12. Which arrangement of four identical
resistances should be used to draw maximum energy from a cell of voltage \mathbf{V}
1)

2)

3)

4)

13. If four resistances are connected as shown in the fig. between A and B the effective resistance is

1) 4Ω
2) 8_{Ω}
3) 2.4Ω
4) 2Ω
14. A letter 'A' is constructed as a uniform wire of resistance $1 \mathrm{ohm} / \mathrm{cm}$. The sides of the letter are 20 cm long and thecross piecein themiddle is 10 cm long whilethe vertex angle is 60°. The resistance of the letter between the two ends of the legs is
1) $40 / 3$
2) $80 / 3 \Omega$
3) 40Ω
4) 10Ω
15. Find the value of colour coded resistance shown is fig

1) $520 \pm 10 \%$
2) $5200 \pm 1 \%$
3) $52000 \pm 10 \%$
4) $52000 \pm 1 \%$
16. The resistance of a wire is 2Ω. If it is drawn in such a way that it experiences alongitudinal strain $\mathbf{2 0 0 \%}$. Its new resistance is
1) 4Ω
2) 8Ω
3) 16Ω
4) 18Ω
17. ' n ' conducting wires of same dimensions but having resistivities $1,2,3, \ldots n$ are connected in series. The equivalent resistivity of the combination is
1) $\frac{n(n+1)}{2}$
2) $\frac{n+1}{2}$
3) $\frac{n+1}{2 n}$
4) $\frac{2 n}{n+1}$
18. An Aluminium ($\alpha=4 \times 10^{-3} \mathrm{~K}^{-1}$) resistance R_{1} and a carbon ($\alpha=-0.5 \times 10^{-3} \mathrm{~K}^{-1}$) resistance R_{2} areconnected in series to have a resultant resistance of 36Ω at all temperatures. The values of R_{1} and R_{2} in Ω respectively are :
1) 32,4
2) 16,20
3) 4,32
4) 20,16
19. The temperature coefficient of a wire is $0.00125^{\circ} \mathrm{C}^{-1}$. At 300 K its resistanceis one ohm.
The resistance of the wire will be 2Ω at
1) 1154 K
2) 1100 K
3) 1400 K
4) 1127 K
20. The electrical resistance of a mercury column in a cylindrical container is ' R '. Themercury ispoured into another cylindrical container with half theradius of cross-section. Theresistance of the mercury column is
1) R
2) $2 R$
3) $16 R$
4) $5 R$
21. Four conductors of same resistance connected to form a square. If the resistance between diagonally opposite corners is 8 ohm, the resistance between any two adjacent corners is
1) 32 ohm
2) 8 ohm
3) $1 / 6 \mathrm{ohm}$
4) 6 ohm
22. The resistivity of a material is \mathbf{S} ohm meter. The resistance between opposite faces of a solid cube of edge 10 cm is (in ohm)
1) $S / 2$
2) $S / 10$
3) 100 S
4) $10 S$
23. Four wires made of same material have different lengths and radii, the wire having more resistance in the following case is
1) $\ell=100 \mathrm{~cm}, r=1 \mathrm{~mm}$
2) $\ell=50 \mathrm{~cm}, r=2 \mathrm{~mm}$
3) $\left.\ell=100 \mathrm{~cm}, \mathrm{r}=\frac{1}{2} \mathrm{~mm} 4\right) ~ \ell=50 \mathrm{~cm}, \mathrm{r}=\frac{1}{2} \mathrm{~mm}$
24. Two different wires have specific resistivities, lengths, area of cross-sections are in the raio 3:4, 2:9 and 8:27. Then the ratio of resistance of two wires is
1) $\frac{16}{9}$
2) $\frac{9}{16}$
3) $\frac{8}{27}$
4) $\frac{27}{8}$
25. Two wires made of same material have their length are in the ratio 1:2 and their masses in the ratio 3 : 16. The ratio of resistance of two wires is
1) $3 / 4$
2) $1: 2$
3) $2: 1$
4) $4: 3$
26. A wire of resistance 18 ohm is drawn until its radius reduce $\frac{1}{2}$ th of its original radius then resistance of the wire is
1) 188Ω
2) 72Ω
3) 288Ω
4) 388Ω
27. A piece of wire of resistance 4Ω is bent through 180° at its midpoint and the two halves are twisted together. Then the resistance is
1) 8Ω
2) 1Ω
3) 2Ω
4) 5Ω
28. If three wires of equal resistance are given then number of combinations they cany be made to give different resistance is
1) 4
2) 3
3) 5
4) 2
29. The effective resistance between A and B in the given circuit is

1) 20Ω
2) 7Ω
3) 3Ω
4) 6Ω
30. H ow many cells each marked ($\mathrm{Q},-12 \mathrm{~A}$) should beconnected in mixed grouping so that it may be marked $(24 \mathrm{~V}-24 \mathrm{~A})$
1) 4
2) 8
3) 12
4) 6
31. The effective resistance in series combination of two equal resistance is ' s '. W hen they arej oined in parallel the total resistance is p. If $s=n p$ then the minimum possible value of ' n ' is
1) 4
2) 1
3) 2
4) 3

ELECTRIC POWER \& JOULES LEW
32. A 25 watt, 220 volt bulb and a 100 watt, 220 volt bulb are connected in series across 440 volt line

1) only 100 watt bulb will fuse
2) only 25 watt bulb will fuse
3) none of the bull will fuse
4) both bull bs will fuse
33. There are 5 tube-lights each of 40 W in a house. These are used on an average for 5 hours per day. In addition, there is an immersion heater of 1500W used on an average for 1 hour per day. The number of units of electricity are consumed ina month is 1) 25 units2) 50 units 3) 75 units 4) 100 units
34. Three equal resistors connected in series across a source emf together dissipate 10 watt. If the same resistors are connected in parallel across the same emf the power dissipate will be
1) 10 watt
2) 30 watt 3) $10 / 3$ watt
3) 90 watt
35. Time taken by a 836 W heater to heat one litre of water from $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ is
1) 50 s
2) 100 s
3) 150 s
4) 200 s
36. A lamp of $600 \mathrm{~W}-240 \mathrm{~V}$ is connected to 220 V mains. Its resistance is
1) 96Ω
2) 84Ω
3) 90Ω
4) 64Ω
37. A $200 \mathrm{~W}-200 \mathrm{~V}$ lamp is connected to 250 V mains. It power consumption is
1) 300 W
2) 312.5 W
3) 292 W
4) 250 W
38. If the current in a heater increases by 10%, the percentage change in the power consumption
1) 19%
2) 21%
3) 25%
4) 17%
39. The power of a heating coil is P . It is cut into two equal parts. The power of one of them across same mains is
1) 2 P
2) $3 P$
3) $P / 2$
4) $4 P$
40. In a house there are four bulbs each of 50W and 5 fans each of 60W. If they are used at the rate of 6 hours a day, the electrical energy consumed in a month of 30 days is
1) 64 KWH 2$) 90.8 \mathrm{KWH} 3$) 72 KWH 4$) 42 \mathrm{KWH}$
41. An electric kettle has two coils. When one coil is switched on it takes 15 minutes and the other takes 30 minutes to boil certain mass of water. The ratio of times taken by them, when connected in series and in parallel to boil the same mass of water is
1) $9: 2$
2) $2: 9$
3) $4: 5$
4) $5: 4$
42. A resistance coil of 60Ω is immersed in 42 kg of water. A current of 7A is passed through it. The rise in temperature of water per minute is
1) $4^{\circ} \mathrm{C}$
2) $8^{\circ} \mathrm{C}$
3) $13{ }^{\circ} \mathrm{C}$
4) $12^{\circ} \mathrm{C}$
43. W hat is the required resistance of the heater coil of an immersion heater that will increase the temperature of 1.50 kg of water from $10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in 10 minutes whileoperating at 240 V ?
1) 25Ω
2) 12.5Ω
3) 250Ω
4) 137.2Ω
44. A $5^{\circ} \mathrm{C}$ rise in the temperature is observed in a conductor by passing some current. W hen the current is doubled, then rise in tem
perature will be equal to
1) $5^{\circ} \mathrm{C}$
2) $10^{\circ} \mathrm{C}$
3) $20^{\circ} \mathrm{C}$
4) $40^{\circ} \mathrm{C}$

CELLS AND COMBINATION OF CELLS

45. In the following diagram, the pd across $6 V$ cell is

1) CV
2) 5.6 V
3) 8.2 V
4) 8.4 V
46. W hile connecting 6 cells in a battery in series, in a tape recorder, by mistake one cell is connected with reverse polarity. If the effective resistance of load is $\mathbf{2 4}$ ohm and internal resistance of each cell is one ohm and emf 1.5V, the current devlivered by the battery is
1) 0.1 A
2) 0.2 A
3) 0.3 A
4) 0.4 A
47. A 10 m long wire of resistance 15 ohm is connected in series with a battery of emf 2 V (no internal resistance) and a resistance of 5 ohm. Thepotential gradient along the wire is
1) $0.15 \mathrm{Vm}^{1}$
2) $0.45 \mathrm{~V} \mathrm{~m}^{1}$
3) $1.5 \mathrm{~V} \mathrm{~m}^{1}$
4) $4.5 \mathrm{Vm}^{1}$
48. W hen a resistance of 2 ohm is placed across a battery the current is 1 A and when the resistance across the terminals is 17 ohm , the current is 0.25 A . the emf of the battery is
1) 4.5 V
2) 5 V
3) 3 V
4) 6 V
49. A battery has six cells in series. E ach has an emf 1.5 V and internal resistance 1 ohm . If an external load of 24_{Ω} is connected to it. The potential drop across the load is
1) 7.2 V
2) 0.3 V
3) 6.8 V
4) 0.4 V
50. 12 cells of each emf 2 V are connected in series among them, if 3 cells are connected wrongly. Then the effective emf. of the combination is
1) 18 V
2) 12 V
3) 24 V
4) 6 V
51. W hen a battery connected across a resistor of 16Ω, the voltage across the resistor is 12V.W hen the same battery is connected across a resistor of 10Ω, voltage across it is 11V. The internal resistance of the battery in ohms is
1) $10 / 7$
2) $20 / 7$
3) $25 / 7$
4) $30 / 7$

KIRCHOFF'SLAWS, WHEATSTONE

BRIDGE

52. Six resistors of each 2 ohm are connected as shown in the figure. The resultant resistance between A and B is.
1) 4Ω
2) 2Ω
3) 1Ω
4) 10Ω
53. In the given circuit current through the galvanometer is
1) Zero
2) Flows fromC to D
3) Flows from D to C
4) In sufficient information
54. The potential difference between A \& B in the given branch of a circuit is

1) O
2) 12 V
3) 9 V
4) OV
55. The resistance between A and B is
A
1) 8Ω
2) 4Ω
3) 3.75Ω
4) 2Ω
56. The resistance between A and B is
1) $\frac{288}{56} \Omega$
2) 12Ω
3) $\frac{8}{3} \Omega$
4) $\frac{9}{4} \Omega$

57. The value of E of the given circuit is
1) 10 V
2) 12 V
3) 14 V
4) 18 V

 of Resistance X, when potential difference between the poins B and D is zero will be
5) 9Ω
6) 8Ω
7) 6Ω
8) 4Ω

METRE BRIDGE

59. When an unknown resistance and a resistance of 4Ω areconnected in the left and right gaps of a M eterbridge, the balance point is obtained at 50 cm . The shift in the balance point if a 4_{Ω} resistance is now connected in parallel to the resistance in the right gap is
1) 66.7 cm
2) 16.7 cm
3) 34.6 cm
4) 14.6 cm
60. In a meter bridge, the gaps are closed by resistances 2 and 3 ohms. The value of shunt to be added to 3 ohm resistor to shift the balancing point by 22.5 cm is
1) 1_{Ω}
2) 2Ω
3) 2.5Ω
4) 5Ω
61. Two equal resistance are connected in the gaps of a metre bridge. If the resistance in the left gap is increased by 10%, the balancing point shift
1) 10% to right
2) 10% to left
3) 9.6% to right
4) 4.8% to right

POTENTIOMETER

62. A potentiometer having a wire of 4 m length is connected to the terminals of a battery with a steady voltage. A leclanche cell has a null point at 1m. If the length of the potentiometer wire is increased by 1 m , The position of the null point is
1) 1.5 m
2) 1.25 m
3) 10.05 m
4) 1.31 m
63. Theemf of a battery A is balanced by a length of 80 cm on a potentio meter wire. Theemf of a standard cell 1 v is balanced by 50 cm . The emf of A is
1) 2 V
2) 1.4 V
3) 1.5 V
4) 1.6 V
64. When 6 identical cells of no internal resistance are connected in series in the secondary circuit of a potentio meter, the balancing length is ' \mid ', balancing length becomes $\mid / 3$ when some cells are connected wrongly, the number of cells conected wrongly are
1) 1
2) 3
3) 2
4) 4
65. In a potentiometer experiment, the balancing length with a cell is 560 cm . W hen an external resistance of 100 hms is connected in parallel to the cell the balancing length changs by 60 cm . Theinternal resistance of thecell in ohm is
1) 3.6
2) 2.4
3) 1.2
4) 0.6
66. The resistivity of a potentio meter wire is, if the area of cross section of the wire is $4 \mathrm{~cm}^{2}$. The current flowing in the circuit is 1A, the poetntial gradient is $7.5 \mathrm{v} / \mathrm{m}$
1) $3 \times 10^{-3} \Omega-\mathrm{m}$
2) $2 \times 10^{-6} \Omega-\mathrm{m}$
3) $4 \times 10^{-6} \Omega-\mathrm{m}$
4) $5 \times 10^{-4} \Omega-\mathrm{m}$
67. A potentiometer wire of 10 m legnth and 20 0 hm resistance is connected in series with a resistance R ohms and a battery of emf 2 V , negligible internal resistance, Potential gradient on the wire is 0.16 millivolt / centimetre then R is ...ohms
1) 50Ω
2) 60Ω
3) 230Ω
4) 46Ω

LEVEL -I (C.W)KEY

1) 2	2) 3	3) 3	4) 4	5) 3	6) 1
7) 4	8) 4	9) 3	10) 2	11) 1	12) 2
13) 4	14) 2	15) 3	16) 4	17) 2	18) 3
19) 4	20) 3	21) 4	22) 4	23) 3	24) 2
25) 4	26) 3	27) 2	28) 1	29) 4	30) 1
31) 1	32) 2	33) 3	34) 4	35) 3	$36) 1$
37) 2	38) 2	39) 1	40) 2	41) 1	$42) 3$
43) 4	44) 3	45) 4	46) 2	47) 1	48) 2
49) 1	50) 2	51) 2	52) 3	53) 3	54) 1
55) 2	56) 3	57) 4	58) 2	59) 2	60) 2
61) 4	62) 2	63) 4	64) 3	65) 3	66) 1
67) 3					

LEVEL-I (C. W) - HINTS

1. $\mathrm{i}=\mathrm{qf}$
2. $\mathrm{q}=\int_{0}^{5} \mathrm{idt}$
3. $\mathrm{E}=\frac{\mathrm{i} \rho}{\mathrm{A}}$
4. no of combinations $x=2^{n}$
5. combination of resistors
6. combination of resistors
7. combination of resistors
8. $\underset{\mathrm{eff}}{\mathrm{R}}=\frac{\mathrm{R}}{\mathrm{n}^{2}}$
9. $\mathrm{R}=\frac{\rho \mathrm{l}}{\mathrm{A}}, \mathrm{V}=\mathrm{Al}$
10. $\mathrm{R}^{1}=\frac{20}{4}=5$

$$
\mathrm{R}_{1}=10 \Omega, \mathrm{R}_{2}=10 ; \mathrm{R}_{\mathrm{p}}=\frac{10}{2}=5
$$

11. Solving for effective resistence by series and paralle combination
12. combination of resistors
13. combination of resistors
14. combination of resistors
15. $R=52 \times 10^{3} \pm 10 \%$
16. $R \propto I^{2}$
17. $R=R_{1}+R_{2}+\ldots R_{n}$

$$
\begin{aligned}
& \frac{\rho(n l)}{A}=1 \frac{1}{A}+2 \frac{1}{A}+\ldots . .+n \frac{1}{A} \\
& \rho n=1+2+3+\ldots \ldots \ldots+n \\
& \rho n=\frac{n(n+1)}{2}=\frac{n+1}{2} S
\end{aligned}
$$

18. $R_{1} \alpha_{1}=R_{2} \alpha_{2}$ and $R_{1}+R_{2}=36$ ohm
19. $\alpha=\frac{\mathrm{R}_{2}-\mathrm{R}_{1}}{\mathrm{R}_{1} \mathrm{t}_{2}-\mathrm{R}_{2} \mathrm{t}_{1}}$
20. $\mathrm{R}=\frac{\rho \mathrm{l}}{\mathrm{A}}, \mathrm{V}=\mathrm{A} \mathrm{I}$
21. Combination of resistors
22. $\mathrm{R}=\frac{\rho \mathrm{l}}{\mathrm{A}}$
23. $\mathrm{R} \alpha \frac{\mathrm{l}}{\mathrm{r}^{2}}$. Check theoptions
24. $\mathrm{R}=\frac{\rho \mathrm{l}}{\mathrm{A}}$
25. $\mathrm{R} \propto \frac{\mathrm{I}^{2}}{\mathrm{~m}}$
26. $R \propto \frac{1}{r^{4}}$
27. $R^{1}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$
28. 2^{n-1}
29. Combination of resistors
30. $\begin{aligned} & \text { Number of rows }=\frac{\text { required current }}{\text { Givencurrent }} \\ &=\frac{24 \mathrm{~A}}{12 \mathrm{~A}}=2=\mathrm{m}\end{aligned}$

Number of cells in each row

$$
=\frac{\text { requried potential }}{\text { Given potential }}
$$

$=\frac{24}{6}=4=n$
\therefore Total no of cells $=\mathrm{n} \times \mathrm{m}$

$$
=2 \times 4=8
$$

31. $R_{S}=n . R_{p}$
32. $\mathrm{R}=\frac{\mathrm{V}^{2}}{\mathrm{P}} ; \mathrm{V}=\mathrm{iR}$
33. $P=\frac{E}{t}, \quad 1 K . W . H=1$ unit
34. $\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}} \Rightarrow \frac{\mathrm{P}_{\mathrm{S}}}{\mathrm{P}_{\mathrm{P}}}=\frac{\mathrm{R}_{\mathrm{p}}}{\mathrm{R}_{\mathrm{S}}}$
35. $W=J Q \Rightarrow P \times t=J m b \Delta T$
36. $\mathrm{R}=\frac{\left(\mathrm{V}^{\prime}\right)^{2}}{\mathrm{P}^{\prime}}$
37. $P=\frac{V^{2}}{R}$
38. $\mathrm{P} \propto \mathrm{i}^{2}$
39. $\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}} ; \mathrm{R}=\frac{\rho \mathrm{l}}{\mathrm{A}}$
40. 1 unit $=\frac{\text { no. watts } \times \text { no.of hours }}{1000}$
41. $\mathrm{t}_{\mathrm{s}}=\mathrm{t}_{1}+\mathrm{t}_{2} ; \mathrm{t}_{\mathrm{p}}=\frac{\mathrm{t}_{1} \mathrm{t}_{2}}{\mathrm{t}_{1}+\mathrm{t}_{2}}$
42. $\mathrm{JQ}=\mathrm{i}^{2} \mathrm{Rt}, \mathrm{mS} \Delta \mathrm{t}=\mathrm{i}^{2} \mathrm{Rt}$
43. use Joule's law

$$
\mathrm{Q}=\mathrm{m} \Delta \mathrm{~T} \Rightarrow \mathrm{but} \mathrm{Q}=\mathrm{i}^{2} \mathrm{RT} \Rightarrow \Delta \mathrm{~T} \alpha \mathrm{i}^{2}
$$

44. $\frac{\Delta \mathrm{t}_{1}}{\Delta \mathrm{t}_{2}}=\frac{\mathrm{i}_{1}^{2}}{\mathrm{i}_{2}^{2}} \Rightarrow \Delta \mathrm{t}_{2}=20^{\circ} \mathrm{C}$
45. $V=E+i r$
46. $\mathrm{i}=\frac{(\mathrm{n}-2 \mathrm{~m}) \mathrm{E}}{(\mathrm{R}+\mathrm{nr})}$
47. Potential gradient $=\frac{E}{r+R+R_{s}} \times \frac{R}{L_{p}}$

$$
=\frac{2}{0+15+5} \times \frac{15}{10}=0.15
$$

48. $i=\frac{E}{R+r}$
49. $V=\left(\frac{n E}{R+n r}\right) R$
50. $E_{e q}=(N-2 m) E$
51. $r=\left(\frac{E-V_{1}}{V_{1}}\right) R_{1}=\left(\frac{E-V_{2}}{V_{2}}\right) R_{2}$. Solve for E and substitutefor r
52. to 56. UseK.V.L.
53. fromK V L
54. $\frac{\mathrm{P}}{\mathrm{Q}}=\frac{\mathrm{R}}{\mathrm{S}}$
55. $\frac{x}{y}=\frac{50}{50}---(1) ; \frac{4}{2}=\frac{1}{(100-I)}$
$1-50=16.7$
56. $\frac{2}{3}=\frac{1}{100-1} \Rightarrow I=40 \mathrm{~cm} ; \frac{2}{\frac{3 r}{3+r}}=\frac{62.5}{100-62.5}$
57. $\frac{X}{R}=\frac{1}{100-1}$
58. $\mathrm{l} \alpha \mathrm{L} \Rightarrow \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{\mathrm{L}_{1}}{\mathrm{~L}_{2}}$
59. $v=i \rho \mid$
60. $E^{\prime}=(n-2 m) E$
61. $r=R\left[\frac{\ell_{1}-I_{2}}{\ell_{2}}\right]$
62. P.G $=\frac{\mathrm{i} R}{\mathrm{I}}$; Resistivity $\rho=\frac{\mathrm{RA}}{\mathrm{L}}$
63. $v=i \rho \mid$

LEVEL-I (H.W)

ELECTRIC CURRENT \& DRIFT VELOCITY

1. The current passing through a conductor is 5 ampere. The charge that passes through that conductor in 5 minute is
1) 1200 C
2) 300 C
3) 1000 C
4) 1500 C
2. In a hydrogen atom, an electron is revolving with an angular frequency $6.28 \mathrm{rad} / \mathrm{s}$ around the nucleus. Then the equivalent electric current is $\times 10^{-19} \mathbf{A}$
1) 0.16
2) 1.6
3) 0.016
4) 16
3. A current of 1.6 A is flowing in a conductor. The number of electrons flowing per second through the conductor is
1) 10^{9}
2) 10^{19}
3) 10^{16}
4) 10^{31}
4. If an electron revolves in the circular path of radius $0.5 \mathrm{~A}^{0}$ at a frequency of $5 \times 10^{15} \mathrm{cycles} /$ sec . The equivalent electric current is
1) 0.4 mA
2) 0.8 mA
3) 1.2 mA
4) 1.6 mA
5. A current flows in a wire of circular cross section with the free electrons travelling with drift velocity \vec{V}. If an equal current flows in a wire of twice the radius, new drift velocity is
1) \bar{v}
2) $\frac{\vec{V}}{2}$
3) $\frac{\vec{V}}{4}$
4) $2 \vec{V}$

OHM'S LAW AND COMBINATION OF RESISTANCES
6. Three resistances each of 3_{Ω} are connected as shown in fig. The resultant resistance between A and F is

1) 9Ω
2) 2Ω
3) 4Ω
4) 1_{Ω}
7. Two wires made of same material have lengths in theratio 1:2 and their volumes in the same ratio. The ratio of their resistances is
1) $4: 1$
2) $2: 1$
3) $1: 2$
4) $1: 4$
8. Two wires made of same material have their electrical resistances in the ratio $1: 4$. If their lengths are in the ratio $1: 2$, the ratio of their masses is
1) $1: 1$
2) $1: 8$
3) $8: 1$
4) $2: 1$
9. There are five equal resistors.

The minimum resistance possible by their combination is 2 ohm . The maximum possible resistance we can make with them is

1) 25 ohm
2) 50 ohm
3) 100 ohm
4) 150 ohm
10. An electric current is passed through a circuit containing two wires of the same material, connected in parallel. If the lengths and radii of the wires are in the ratio $4 / 3$ and $2 / 3$, then the ratio of the currents passing through the wires will be
1) 3
2) $1 / 3$
3) $8 / 9$
4) 2
11. A current of 1 A is passed through two resistances 1_{Ω} and 2_{Ω} connected in parallel. The current flowing through 2_{Ω} resistor will be
1) $1 / 3 \mathrm{~A}$
2) 1 A
3) $2 / 3 \mathrm{~A}$
4) 3 A
12. The colour coded resistance of corbon resistance is (Initial three bands are red and fourth band issilver)
1) $222 . \Omega \pm 10 \%$
2) $2200 \Omega \pm 10 \%$
3) $333 \Omega \pm 5 \%$
4) $33000 \Omega \pm 10 \%$
13. The resistance of a wire is 10 ohm. The resistance of a wire whose length is twice and theradiusis half, if it is made of same material is
1) 20Ω
2) 5Ω
3) 80Ω
4) 40Ω
14. The resultant resistance of two resistors when connected in series is 48 ohm . The ratio of their resistances is $3: 1$. The value of each resistance is
1) $20_{\Omega}, 28 \Omega$
2) $32 \Omega, 16 \Omega$
3) $36 \Omega, 12 \Omega$
4) $24 \Omega, 24 \Omega$
15. The resistance of a bulb filament is 100Ω at a temperature of $100^{\circ} \mathrm{C}$. If its temperature coefficient of resistance be 0.005 per ${ }^{\circ} \mathrm{C}$, its resistance will become 200Ω at temperature of
1) $300^{\circ} \mathrm{C}$
2) $400^{\circ} \mathrm{C}$
3) $500^{\circ} \mathrm{C}$
4) $200^{\circ} \mathrm{C}$
16. The current ' i ' in the circuit given aside is
1) 0.1 A
2)

$0.2 \mathrm{~A}^{2 \mathrm{~V}}$
3) 1.0 A
4) 2.0 A

17. The combined resistance of two conductors in series is 1_{Ω}. If the conductance of one conductor is 1.1 siemen, the conductance of the other conductor in siemen is

1) 10
2) 11
3) 1
4) 1.1
18. Four conductors of resistnace 16Ω each are connected to form a square. The equivalent resistanceacrosstwo adjacent cornersis(in ohm)
1) 6
2) 18
3) 12
4) 16
19. W hen two resistances are connected in parallel then the equivalent resistance is $\sigma / 5 \Omega$. W hen one of the resistance is removed then the effective resistance is 2Ω. The resistance of the wire removed will be
1) 3 ohm
2) 2 ohm
3) $\frac{3}{5} \mathrm{ohm}$
4) $\frac{6}{5} \mathrm{ohm}$
20. A material ' B ' has twice the specific resistance of ' A '. A circular wire made of ' B ' has twice the diameter of a wire made of ' A '. Then for the two wires to have the same resistace, the ratio I_{B} / I_{A} of their respective lengths must
1) 1
2) $1 / 2$
3) $1 / 4$
4) $2 / 1$
21. If a wire of resistance ' R ' is melted and recasted in to half of its length, then the new resistance of the wire will be
1) $R / 4$
2) $R / 2$
3) R
4) $2 R$
22. W hen a wire is drawn until its radiusdecreases by 3\% . Then percentage of increase in resistance is
1) 10%
2) 9%
3) 6%
4) 12%
23. W hen three wires of unequal resistances are given the number of combinations they can be made to give different resistances is
1) 6
2) 4
3) 2
4) 8
24. The resistance of a coi is 4.2Ω at $100^{\circ} \mathrm{C}$ and the temperature coefficient of resistance of its material is $0.004 /{ }^{\circ} \mathrm{C}$. Its resistance at $0^{\circ} \mathrm{C}$ is
1) 6.5Ω
2) 5Ω
3) 3Ω
4) 2.5Ω
25. You are given several identical resistors each of value 10Ω and each capable of carrying a maximum current of 1A. It isrequired to make a suitable combination of these to resistances to produce a resistance of 5Ω which can carry a current of 4A. The minimum number of resistors required for this job is
1) 4
2) 8
3) 10
4) 20
26. A wire of resistance 50Ω is cut into six equal parts and they ae bundled together side by side to form a thicker wire. The resistance of the bundleis
1) $\frac{18}{25} \Omega$
2) $\frac{9}{12.5} \Omega$
3) $\frac{25}{9} \Omega$
4) $\frac{25}{18} \Omega$
27. Three conductors of resistance 12Ω each are connected to form an equilateral triangle. The resistance between any two vertices is
1) 4Ω
2) 2Ω
3) 6Ω
4) 8Ω
28. W hen three equal resistance are connected in parallel, the effective resistance is $1 / 3 \Omega$. If all are connected in series, the effective resistance is
1) 9Ω
2) 3Ω
3) 6Ω
4) 12Ω
29. A technician has only two resistance coils. By using them in series or in paralle he is able to obtain the resistance 3,4,12 and 16 ohms. The resistance of two coils are
1) 6,10
2) 4,12
3) 7,9
4) 4,16
30. The effective resistance between $A \& B$ in the given circuit is

1) 7Ω
2) 2Ω
3) 6Ω
4) 5Ω
31. The effective resistance between A and B is
3Ω then the value of R is
1) 2Ω
2) 4Ω
3) 6Ω
4) 8Ω

32. The effective resistance between A and B in the given circuit is
1) 2Ω
2) 4Ω
3) 3Ω
4) 6Ω

ELECTRIC POWER\&JOULES LAW

33. A n electric bulb is rated 220 volt and 100 watt. Power consumed by it when operated on 110 volt is
1) 50 watt
2) 75 watt
3) 90 watt
4) 25 watt
34. A heater coil is cut in to two parts of equal length and only one of them is used in the heater. Theratio of the heat produced by this half-coil to that by the original coil is
1) $2: 1$
2) $1: 2$
3) $1: 4$
4) $4: 1$
35. If the electric current in a lamp decreases by 5\% then the power output decreases by
1) 20%
2) 10%
3) 5%
4) 2.5%
36. Two electric bulbs whose resistances are in the ratio of 1 : 2 are connected in parallel to a constant voltage source. The powers dissipated in them have the ratio
1) $1: 2$
2) $1: 1$
3) $2: 1$
4) $1: 4$
37. A bulb rated $60 \mathrm{~W}-120 \mathrm{~V}$ is connected to 80 V mains. W hat is the current through the bulb
1) $\frac{1}{3} A$
2) $\frac{2}{3} A$
3) $\frac{5}{3} A$
4) $\frac{3}{5} \mathrm{~A}$
38. An electric bulb has the following specifications 100 watt, 220 volt. The resistance of bulb
1) 384
2) 484Ω
3) 344Ω
4) 584Ω
39. A 200W and 100W bulbs, both meant for operation at 220 V , are connected in series to 220V. The power consumption by the combination is
1) 46 W
2) 66 W
3) 56 W
4) 75 W
40. Five bulbs, each rated at $40 \mathrm{~W}-220 \mathrm{~V}$ are used for 5 hours daily on 20V line. H ow may units of electric energy is consumed in a month of 30 days?
1) 20 units
2) 25 units 3) 15 units
3) 30 units
41. An electric K ettle hastwo heating coils. When one of them is switched on water in it boils in 6 minutes and when other isswitched on water boils in 4 minutes. In what time will the water boil if both coil are switched on simultaneously
1) 1.6 min
2) 2.8 min
3) 2.4 min
4) 3 min
42. A 10 V storage battery of negligible internal resistance is connected across a 50Ω resistor. How much heat energy is produced in the resistor in 1 hour
1) 7200 J
2) 6200
3) 5200 J
4) 4200

CELLSAND COMBINATION OF CELLS
43. A cell of emf 6 V is being charged by 1 A current. If the internal resistance of the cell is 1 ohm , the potential difference across the terminals of the cell is

1) 5 V
2) 7 V
3) GV
4) 8 V
44. When two identical cells are connected either in series or in parallel across 2 ohm resistor they send the same current through it. The internal resistance of each cell is
1) 2 ohm
2) 1.2 ohm
3) 12 ohm
4) 21 ohm
45. The emf of a Daniel cell is 1.08 V . W hen the terminals of the cells are connected to a resistance of 3Ω, the potential difference across theterminlas is found to be 0.6 V . Then the internal resistance of the cell is
1) 1.8Ω
2) 2.4Ω
3) 3.24Ω
4) 0.2Ω
46. Four cells each of emf $2 V$ and internal resistance 1 ohm are connected in parallel with an external resistance of 6 ohm . The current in the external resistance is
1) 0.32 A
2) 0.16 A
3) 0.2 A
4) 0.6 A
47. A student is asked to connected four cells of emf of 1 V and internal resistance 0.5 ohm in series with an external resistance of 1 ohm. But one cell is wrongly connected by him with its terminal reversed, the current in thecircuit is
1) $\frac{1}{3} \mathrm{~A}$
2) $\frac{2}{3} \mathrm{~A}$
3) $\frac{3}{4} \mathrm{~A}$
4) $\frac{4}{3} \mathrm{~A}$
48. Two cells of emf $1.25 \mathrm{~V}, 0.75 \mathrm{~V}$ and each of internal resistance 1Ω are connected in parallel. The effective emf will be
1) 1 V
2) 1.25 V
3) 2 V
4) 0.5 V
49. The emf of a cell is 2 V . When the terminals of the cell is connected to a resistance 4Ω. The potential difference across the terminals, if internal resistance of cell is 1Ω is
1) $\frac{3}{5} \mathrm{~V}$
2) $\frac{8}{5} \mathrm{~V}$
3) $\frac{6}{5} \mathrm{~V}$
4) $\frac{5}{8} \mathrm{~V}$
50. If the external resistance is equal to internal resistance of a cell of emf E . The current across the circuit is
1) $\frac{E}{r}$
2) $\frac{r}{E}$
3) $\frac{r}{2 E}$
4) $\frac{E}{2 r}$
51. Two cells each of emf 10 V and each 1Ω internal resistance are used to send a current through a wire of 2Ω resistance. The cells are arranged in parallel. Then the current through thecircuit
1) 2 A
2) $4 A$
3) $3 A$
4) 5 A

KIRCHOFF'S LAWS, WHEATSTONE BRIDGE

52. The figure below shows current in a part of electric circuit. The current i is

1) 1.7 amp 2$) 3.7 \mathrm{amp} 3) 1.3 \mathrm{amp} 4) 1 \mathrm{amp}$
53. C urrent in themain circuit shown is

1) 1.5 A
2) 2 A
3) 0.6 A
4) 1 A
54.. Find ' i ' for the given loop.
5) $\frac{6}{5} \mathrm{~A}$
6) $\frac{8}{9} \mathrm{~A}$
7) $\frac{1}{2} A$
8) 1 A

55. The potential difference between points A and B is

1) 0 V
2) 10 V
3) 4 V
4) 5 V
56. In wheat stone bridge, P and Q are approximately equal. W hen R is 500Ω, the bridge is balanced. On interchanging P and Q, the values of R is 505Ω for balanching. The value of ' S ' is
1) 500.5Ω
2) 501.5Ω
3) 502.5Ω
4) 503.5Ω
57. To balance the bridge in the circuit, the values of R is
1) 8Ω
2) 4Ω
3) 20Ω
4) 12Ω

METREBRIDGE
58. The point in a M etre bridge is at 35.6 cm . If the resistances in thegaps are interchanged, thenew balancepoint is

1) 64.4 cm
2) 56 cm
3) 41.2 cm
4) 56.7 cm
59. In a metre bridge expt, when the resistances in thegaps areinterchanged the balance point is increases by 10 cm . The ratio of the resistances is
1) $\frac{15}{5}$
2) $\frac{12}{8}$
3) $\frac{11}{9}$
4) $\frac{10}{9}$
60. W hen an unknown resistance and a resistance 6Ω are connected in the left and right gaps of a meter bridge, the balance point is obtained at 50 cm . If 3Ω resistance is connected in parallel to resistance in right gap, the balance point is
1) decrease by 25 cm
2) increase by 25 cm
3) decrease by 16.7 cm
4) increase by 16.7 cm
61. W hen un known resistance and a resistance of 5Ω are used in left and right gaps of meter bridge the balance point is 50 cm . The balanceing point if 5Ω resistance is now connected in seriece to the resistor in right gap
1) 20 cm
2) 33.3
3) 60 cm
4) 60 cm
62. In a meter bridge experiement two unkonwn resistances X and y are connected to left and right gaps of a meter bridge and the balancing point is obtained at 20 cm from right ($X>Y$) the new position of the null point from left if one decides balance a resistance of 4X against Y.
1) 114 cm
2) 80 cm
3) 53.3 cm
63. In a potentiometer the balance length with standard cadmium cell is 509 cm . The emf of a cell which when connected in the place of the standard cell gave a balance length of 750 cm is (emf of standard cell is 1.018 V)
1) 1.5 V
2) 0.5 V
3) 1.08 V
4) 1.2 V
64. Two cells of emf's E_{1} and E_{2} when placed in series producenull deflection at a distance of 204 cm in a potentio meter. W hen one cell is reversed they produce null deflection at 36 cm if $E_{1} 1.4 v$ then $E_{2}=$
1) 0.98 V
2) 2.47 V
3) 0.098 V
4) 98.8 V
65. When 6 identical cells of no internal resistance areconnected in series in thesecond arycircuit of a poetntio meter, the balancing length is I. If two of them are wrongly connected the balancing length becomes
1) $\frac{1}{4}$
2) $\frac{1}{3}$
3) 1
4) $\frac{2 \mid}{3}$
66. In an experiment to determine the internal resistance of a cell with potentiometer, the balancing length is 165 cm . W hen a reistance of 5 ohm is joined in parallel with the cell the balancing length is 150 cm . The internal resistance of cell is
1) 2.2Ω
2) 1.1Ω
3) 3.3Ω
4) 0.5Ω
67. The resistivity of a potentio meter wire is 40 $x 10^{-8} \Omega-m$ and its area of cross section is 8 $x 10^{-6} \mathrm{~m}^{2}$. If 0.2 A current is flowing through the wire, the potential gradient will be
1) $10^{-2} \mathrm{~V} / \mathrm{m}$
2) $10^{-1} \mathrm{~V} / \mathrm{m}$
3) $3.2 \times 10^{-2} \mathrm{~V} / \mathrm{m}$
4) $1 \mathrm{~V} / \mathrm{m}$
68. The emf of a cell is $E v$, and its its internal resistance is 1Ω. A resistance of 4Ω is joined to battery in parallel. This is connected in secondary circuit of poetntio meter. The balancing length is 160 cm . If 1 V cell balances for 100 cm of potentio meter wire, the emf of cell E is
1) 1 V
2) 3 V
3) 2 V
4) 4 V

LEVEL -I (H,W)KEY

1) 4	2) 2	3) 2	4) 2	5) 3	6) 4
7) 4	8) 1	9) 2	10) 2	11) 1	12) 2
13) 3	14) 3	15) 2	16) 1	17) 2	18) 3
19) 1	20) 4	21) 1	22) 4	23) 4	24) 3
25) 2	26) 4	27) 4	28) 2	29) 2	30) 3
31) 3	32) 3	$33) 4$	34) 1	35) 2	36) 3
37) 1	38) 2	39) 2	40) 4	41) 3	42) 1
43) 2	44) 1	45) 2	46) 1	47) 2	48) 1
49) 2	50) 4	51) 2	52) 1	53) 4	54) 2
55) 1	56) 3	57) 1	58) 1	59) 3	60) 2
61) 2	62) 3	63) 1	64) 1	65) 2	66) 4
67) 1	68) 3				

1) 4
2) 2
3) 2
4) 2
5) 3
6) 4
7) 4
8) 3
9) 2
10) 1
11) 2
12) 3
13) 1
14) 4
15)
16) 2
17) 2
18) 3
19) 3
20) 3
21) 4
22) 4
23) 3
24) 1
25) 2
26) 1
45)2
27) 1
28)
29) 2
30) 2
31) 3
32) 1
33) 1
34) 3
35) 2
36) 2
37) 3
38) 1
39) 1
40) 2
41) 4
42) 1
43) 3
1. $\quad i=\frac{q}{t}$
2. $\mathrm{i}=\mathrm{qf}$
3. $\mathrm{i}=\frac{\mathrm{ne}}{\mathrm{t}} \Rightarrow \mathrm{n}=\frac{\mathrm{it}}{\mathrm{e}}$
4. $i=q f$
5. $\quad V_{d} \propto \frac{1}{r^{2}}$
6. The 3 resistances are paralled
7. $\mathrm{R} \propto \mathrm{I}^{2} \quad \because \mathrm{~V}$ constant
8. $R \propto \frac{I^{2}}{m}$
9. $\quad \frac{\mathrm{R}}{5}=2 \quad \mathrm{R}_{\max }=5 \mathrm{R} \quad \mathrm{R}_{\min }=\frac{\mathrm{R}}{5}$.
10. $\frac{i_{1}}{i_{2}}=\frac{r_{1}^{2}}{r_{2}^{2}} \times \frac{l_{2}}{l_{1}}$
11. $\mathrm{i}_{2}=\frac{i \mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$
12. $R=22 \times 10^{2} \pm 10 \%$
13. $\frac{R_{1}}{R_{2}}=\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}} \times \frac{\mathrm{r}_{2}^{2}}{\mathrm{r}_{1}^{2}}$
14. $R_{S}=R_{1}+R_{2}, R_{p}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$

Solving for $R_{1} \& R_{2}$
15. $\alpha=\frac{\mathrm{R}_{2}-\mathrm{R}_{1}}{\mathrm{R}_{1} \mathrm{t}_{2}-\mathrm{R}_{2} \mathrm{t}_{1}}$
16. use ohm's law
17. $R_{1}+R_{2}=1$ ohm

$$
\begin{aligned}
& \frac{1}{\mathrm{R}_{1}}=1.1 \Rightarrow \mathrm{R}_{1}=\frac{10}{11} \\
& \mathrm{R}_{2}=1-\mathrm{R}_{1} \quad \therefore \frac{1}{\mathrm{R}_{2}}=\frac{1}{1-\mathrm{R}_{1}}
\end{aligned}
$$

19. $\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{6}{5}$. If R_{2} isremoved $R_{1}=2 \Omega$

$$
\frac{2 R_{2}}{2+R_{2}}=\frac{6}{5} \Rightarrow 5 R_{2}=6+3 R_{2} \Rightarrow R_{2}=3 \Omega
$$

20. $\mathrm{R}=\frac{\rho \ell}{\mathrm{A}} \Rightarrow \ell=\frac{\mathrm{RA}}{\rho} \Rightarrow \mathrm{I} \propto \frac{\mathrm{r}^{2}}{\rho}$
21. $\mathrm{R} \propto \ell^{2}$
22. $R \propto \frac{1}{r^{4}}$
23. 2^{n}
24. $\mathrm{R}_{\mathrm{t}}=\mathrm{R}_{0}(1+\alpha \mathrm{t})$
25. $R_{p}=\frac{R}{n} ; i_{p}=m i$

$$
\Rightarrow \mathrm{m} \times \mathrm{n}=
$$

26. $R^{\prime}=\frac{R}{n^{2}}$
27. $\mathrm{R}^{\prime}=\frac{2 \mathrm{R}}{3}$
28. $R_{p}=\frac{R}{n}$ and $R_{s}=n R$
29. $R_{1}=\frac{R_{S}+\sqrt{R_{s}^{2}-4 R_{5} R_{p}}}{2}$

$$
R_{2}=\frac{R_{s}-\sqrt{R_{s}^{2}-4 R_{s} R_{p}}}{2}
$$

30. Using combination of resistors
31. Using combination of resistors
32. Using combination of resistors
33. $\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}}$
34. $\mathrm{W}=\mathrm{J} \mathrm{Q} \Rightarrow \mathrm{Q}=\frac{\mathrm{V}^{2}}{\mathrm{RJ}} \Rightarrow \frac{\mathrm{Q}_{1}}{\mathrm{Q}_{2}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}$
35. $\mathrm{P}=\mathrm{i}^{2} \mathrm{R} \Rightarrow \mathrm{P} \alpha \mathrm{i}^{2} \Rightarrow \frac{\Delta \mathrm{P}}{\mathrm{P}} \times 100=2 \times \frac{\Delta \mathrm{I}}{\mathrm{I}} \times 100$
36. $P=\frac{V^{2}}{R}$
37. $\mathrm{R}=\frac{\mathrm{V}^{12}}{\mathrm{P}^{\prime}} \quad$ and $\mathrm{i}=\frac{\mathrm{V}}{\mathrm{R}}$
38. $R=\frac{V^{2}}{P}$
39. $P=\frac{P_{1} P_{2}}{P_{1}+P_{2}}$
40. $\frac{\text { no.of watts } \times \text { no. of hours }}{1000}$
41. $\mathrm{t}_{\mathrm{s}}=\mathrm{t}_{1}+\mathrm{t}_{2} ; \quad \mathrm{t}_{\mathrm{p}}=\frac{\mathrm{t}_{2}}{\mathrm{t}_{1}+\mathrm{t}_{2}}$
42. $\mathrm{Q}=\frac{\mathrm{V}^{2}}{\mathrm{R}} \mathrm{t} \Rightarrow \mathrm{Q}=7200 \mathrm{~J}$
43. $\mathrm{V}=\mathrm{E}+\mathrm{ir}$
44. $i_{s}=i_{p} ; \frac{n E}{(R+n r)}=\frac{E}{\left(R+\frac{r}{n}\right)}$
45. $r=\left(\frac{E-V}{V}\right) R$
46. $\mathrm{i}=\frac{\mathrm{E}}{\mathrm{R}+\frac{\mathrm{r}}{\mathrm{n}}}=\frac{2}{6+\frac{1}{4}}=\frac{2 \times 4}{25}=\frac{8}{25}$
47. $\mathrm{i}=\frac{(\mathrm{N}-2 \mathrm{n}) \mathrm{E}}{\mathrm{R}+\mathrm{Nr}}=\frac{(4-2) \times 1}{1+4 \times 0.5}=\frac{2 \times 1}{3}$
48. $E_{\text {eff }}=\frac{E_{1} r_{2}+E_{2} r_{1}}{r_{1}+r_{2}}$
49. $V=E-i r$
50. $i=\frac{E}{R+r}$
51. $i=\frac{E}{\frac{r}{n}+R}$
52. K.C.L
53. K.C.L
54. K.C.L
55. K.C.L
56. $\frac{\mathrm{P}}{\mathrm{Q}}=\frac{\mathrm{R}}{\mathrm{S}}$
57. $\frac{P}{Q}=\frac{R}{S}$
58. $\frac{\mathrm{P}}{\mathrm{Q}}=\frac{35.6}{64.4}, \frac{\mathrm{Q}}{\mathrm{R}}=\frac{64.4}{35.6}$
59. $\frac{X}{R}=\frac{1}{100-1}$
60. $\frac{X}{R}=\frac{1}{100-1}$
61. $\frac{X}{R}=\frac{1}{100-1}$
62. $\frac{x}{y}=\frac{1}{100-1}$
63. $\frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}=\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}} 3$
64. $\frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}=\frac{\ell_{1}+\ell_{2}}{\ell_{1}-\ell_{2}}$
65. $N E \alpha I_{1},(N-2 m) E \alpha I_{2}$
66. $r=R\left[\frac{\ell_{1}-I_{2}}{\ell_{2}}\right]$
67. P.G $=\frac{\mathbf{i} \rho}{\mathrm{A}}$
68. $r=R\left[\frac{\ell_{1}-I_{2}}{\ell_{2}}\right]$
