For More Study Material

For Class 9 Science	$\underline{\text { Click here }}$
For Class 9 Mathematics	$\underline{\text { Click here }}$
For Class 10 Science	$\underline{\text { Click here }}$
For Class 10 Mathematics	$\underline{\text { Click here }}$
For Class 11 Physics	$\underline{\text { Click here }}$
For Class 11 Chemistry	$\underline{\text { Click here }}$
For Class 11 Biology	$\underline{\text { Click here }}$
For Class 11 mathematics	$\underline{\text { Click here }}$
For Class 12 Physics	$\underline{\text { Click here }}$
For Class 12 Chemistry	$\underline{\text { Click here }}$
For Class 12 Biology	$\underline{\text { Click here }}$
For Class 12 Mathematics	

C.U.Q

FARADAY'S EXPERIMENT, INDUCED E.M.F \& LENZ'S' LAW

1. When ever theflux linked with a coil changes, then
1) current is always induced
2) anerff and a current arealways induced
3) anerf isinduced but acurrent is never induced
4) an erf is always induced and a current is induced, when the coil is closed one
2. Whenever the magnet flux linked with a coil changes, then there is an induced emf in the circuit. This emf lasts
1) For a short time
2) Foralong time
3) For ever
4) So longasthechangeinthefluxtakes place
3. A magnet is moved towards thecoil (i) quickly (ii) slowly then the induced emf is
1) Larger in case(i)
2) Smaller incase(i)
3) Equad inboth
4) Larger or smaller depending upontheradius of thecoil
4. The laws of electromagnetic induction have been used in the construction of a
1) galvanometer
2) voltmeter
3) dectric motor
4) electric generator
5. When a rate of change of current in a circuit is unity, the induced emf is equal to
1) Total flux linked withthecoil
2) induced charge
3) Number of turns inthecircle
4) Coefficient of self induction
6. A bar magnet is dropped along the axis of copper ring held horizontally. The acceleration of fall is
1) Equal to ' g ' at theplace 2) Lessthan ' g '
2) Morethan ' g '
3) Depends upondiameter of thering and length of themegnet
7. An annular circular brass disk of inner radius ' r ' and outer radius ' R ' is rotating about an axis passing through its center and perpendicular to its plane with a uniform angular velocity ' ω ' in a uniform magnetic filed of induction ' B ' normal to the plane of the disk. Theinduced emf between the inner and outer edge of the annular disk is
1) $\frac{B \omega\left(r^{2}+R^{2}\right)}{2}$
2) $\frac{B \omega\left(R^{2}-r^{2}\right)}{2}$
3) $\frac{B \omega(r-R)}{2}$
4) $\frac{B \omega(r+R)}{2}$
8. Consider thesituation shown in the figure. If the current I in the long straight conducting wire XY is increased at a steady rate then the induced e.m.f.'s in loopsA and B will be

1) clockwiseinA, anti clockwisein
2) anti clockwiseinA, clockwisein B
3) clockwiseinboth A and B
4) anti clockwisein both A and B

FLEMING'S RIGHT HAND RULE
9. The direction of the induced e.m.f. is determined by

1) Fleming'sleft hand rule
2) Fleming'sright handrule
3) Maxwell'srighthand screw rule
4) Ampere's suleof swimming
10. A wire moves with a velocity " v " through a magnetic field and experiences an induced charge separation as shown. Then the direction of the magnetic field is

1) into thepage
2) out of the page
3) towards the bottom of the page
4) towards thetop of the page
11. An electric potential difference will beinduced between the ends of the conductor shown in the figure, if the conductor moves in the direction shown by

12. A horizontal straight conductor when placed along south-north direction falls under gravity; there is
1) aninduced currentformsouth-to-north direction
2) aninduced currentfromnorth-to-south direction
3) no inducederf along thelength of the conductor
4) aninduced erf along thelength of the conductor
13. Two circular, similar, coaxial loops carry equal currents in the same direction. If the loops are brought nearer, what will happen?
1) Current will increaseineach loop
2) Current will decreaseineachloop
3) Current will remain sameineachloop
4) Current will increase in one and decresse in theother
14. A long conducting wire AH is moved over a conductingtriangular wireCDE with a constant velocity vin a uniform magnetic field \vec{B} directed into the plane of the paper. Resistance per unit length of each wire is ρ. Then

1) aconstant clockwise induced current will flow inthedosed loop
2) anincreesing anticlockwise induced current will flow intheclosed loop
3) adecreasing anticlockwiseinduced current will flow intheclosed loop
4) aconstart anticlockwiseinduced currentwill flow inthedosed loop
15. A square coil ACDE with its plane vertical is released from rest in a horizontal uniform megnetic field \vec{B} of length 2 L. The acceleration of the coil is

1) less than ' g ' for all thetimetill theloop crosses themagnetic field completly
2) lessthan ' g ' when it entersthefield and greater than ' g ' whenit comes out of thefied
3) ' g ' all thetime
4) less than ' g ' whenitenters and comes out of the fied but equal to ' g ' whenitis withinthefied
16. A conductingwireframeis placed in a magnetic field which is directed into the plane of the paper. The magnetic field is increasing at a constant rate. The directions of induced currents in wires $A B$ and $C D$ are
1) B to A and D to C
2) A to B and C to D
3) A to B and D to C
4) B to A and C to D

17. A rectangular loop of wire with dimensions shown in figure is coplanar with a long wire carrying current ' l '. The distance between the wire and the left side of the loop is r. The loop is pulled to the right as indicated. W hat are the directions of theinduced current in the loop and themagnetic forces on the left and theright sides of the loop when the loop is pulled?

Induced C urrent	Force on Left side	F orce on Right side
a. Cunterclockwise	To the left	To the left
b. Counterclokwise	To the right	To the left
c. Clokwise	To the right	To theleft
d. Clockwise	To the left	To the right

18. Thefour wireloopsshown figure have vertical edge lengths of either L,2Lor3L. They will move with the same speed into a region of uniform magnetic field \vec{B} directed out of the page. R ank them according to the maximum magnitude of the induced emf greatest to least.

в

1) 1 and 2 tie, then 3 and 4 tie
2) 3 and 4 tie, then 1 and 2 tie
3) $4,2,3,1$ 4) 4 then, 2 and 3 tieand then 1
19. A rod lies across frictionless rails in a uniform magnetic field \vec{B} as shown in figure. Therod moves to the right with speed V . In order to makethe induced emf in the circuit to bezero, the magnitude of the magnetic field should
1) not change
2) increaselinearly withtime

3) decreeselinearly withtime
4) decreasenonlinearly with time
20. An electron moves on a straight line path γ^{\prime} 'as shown in figure. A coil is kept on the right such that Y^{\prime} is the plane of the coil. At the instant when the electron gets closest to the coil (neglect self-induction of the coil)
1) Thecurrent in the coil flows clockwise
2) Thecurrent inthe coil flowsanticlockwise

3) Thecurrentinthecoil iszero
4) The current in the coil does not change the directionas theelectroncrosses point O
21. In figure, there is a conducting ring having resistance R placed in the plane of paper in a uniform magnetic field B_{0}. If thering is rotating in the plane of paper about an axis passing through point O and perpendicular to the plane of paper with constant angular speed ω in clockwise direction, then

1) point O will beat higher potential than A
2) thepotential of point B and C will bedifferent
3) the current in thering will bezero
4) thecurrent in thering will be $2 B_{0} \omega r^{2} / R$
22. In the space shown a non-uniform magnetic field $\vec{B}=B_{0}(1+x)(-\hat{k})$ tesla is present. A closed loop of small resistance, placed in the xy plane is given velocity V_{0}. The forcedueto magnetic field on the loop is
1) zero
2) Along $+x$ direction
3) along-xdirection
4) along $+y$ direction
23. Two identical cycle wheels (geometrically) have different number of spokes connected from centre to rim. One is having 20 spokes and the other having only 10 (therim and the spokes are resistanceless). One resistance of value R is connected between centre and rim. The current in R will be
1) doubleinthefirst whed thaninthesecond whed
2) four times in thefirst whed thaninthe second whed
3) will bedoubleinthesecond whed than that of thefirst whed
4) will beequal in boththesewheds
24. $A B$ and $C D$ are fixed conducting smooth rails placed in a vertical palne and joined by a constant current source at its upper end. PQ is a conducting rod which is freeto slideon the rails. A horizontal uniform magnetic field exists in space as shown in figure. If the rod PQ is released from rest then,

1) therod $P Q$ will movedownward with constant accelerdion
2) the rod $P Q$ will move upward with constant acceleration
3) therod will remainat rest 4) any of theabove
25. Three identical coils A, B and C carrying currents are placed coaxially with their planes parallel to one another. A and C carry current as shown in figure B is kept fixed while A and C both are moved towards B with the same speed. Initially, B is equally seperated from A and C. Thedirection of the induced current in the coil B is
1) sameasthat in coil A
2) sameas that in coil B
3) zero
4) noneof these
26. Two identical conductors P and Q are placed on two frictionless rails Rand S in a uniform magnetic field directed into the plane. If p is moved in the direction shown in figure with a constant speed, then rod Q
1) will beattracted towards P
2) will berepelled away fromP
3) will remainstationary
4) mey berepelled away orattracted towards P

SELFINDUCTIONAND MUTUALINDUCTION
27. An inductance stores energy in the

1) electric filed
2) magneticfield
3) resistanceof thecoil
4) electric and magneic fields
28. If ' N ' is the number of turns in a coil, the value of self inductance varies as
1) N^{0}
2) N
3) N^{2}
4) N^{-2}
29. A series combination of L and R is connected to a battery of emf E having negligible internal resistance. The final value of current depends upon
1) L and R only
2) E and L only
3) E and R only
4) L, R and E only
30. Two coils of inductances L_{1}, and L_{2} are linked such that their mutual inductance is M
1) $L_{1}+L_{2}$
2) $\frac{1}{2}\left(L_{1}+L_{2}\right)$
3) $\left(L_{1} \pm L_{2}\right)$
4) $\sqrt{L_{1} L_{2}}$
31. The coefficient of self inductance and the coefficient of mutual inductance have
1) sameunits butdifferentdimensions
2) different unitsbut samedimensions
3) different units and different dimensions
4) sameunits and samedimensions
32. The mutual inductance between a pair of coils each of ' N ' turns is ' M '. If a current is ' I ' in the first coil is bought to zero in a timet, then the average emf induced in the second coil is
1) MI / t
2) Mt / I
3) Mt / N
4) It/MN
33. A circuit contains two inductors of selfinductance L_{1} and L_{2} in series. If M is the mutual inductance then the effective inductance of thecircuit shown will be
1) $L_{1}+L_{2}$ 2) $L_{1}+L_{2}-2 M$

2) $L_{1}+L_{2}+M$ 4) $L_{1}+L_{2}+2 M$
34. In the circuit of figure, (1) and (2) are ammeters. Just after key K is pressed to complete the circuit, the reading is
1) meximuminboth (1) and (2)
2) zero in both (1) and (2)
3) zero in(1), minimumin (2)

4) maximumin (1), zero in (2)
35. A pure inductor L, a capacitor C and a resistance R are connected across a battery of emf E and internal resistance ras shown in the figure. Switch S_{w} is closed at $t=0$, select the correct alternative(s).

1) current through resistance R iszero all thetime 2) current through resistance R iszero at $t=0$ and $t \rightarrow \infty$
2) maximumchargestored inthecapacitor is CE 4) maximumergystored intheinductor is equal to themaximumenergy stored inthecapacitor
36. In thecircuit shown in figure, a conducting wire HE is moved with a constant speed vtowards left. Thecomplete circuit is placed in a uniform magnetic field \vec{B} perpendicular to the plane of the circuit inwards. The current in HKDE is
1) clockwise
2) anticlockwise
3) atemating
4) zero

37. In which of the following cases the emf is induced duetotimevaryingmagneticfied (inducedfield emf)? C ase I A magnet is moving along the axis of a conducting coil
C asell A loop having varying area (dueto moving jumper) is placed in a magnetic field C ase III The resistance of the coil is changing, which is connected to an ideal battery. C ase IV A current carrying wire is approaching a conducting ring.
1) I, II and III only
2) I, III and IV only
3) I, II and IV only
4) All thefour
38. A closed conducting ring is placed in between two bar magnets as shown in the figure. The pole strength of M_{1} is double that of M_{2}. W hen the two bar magnetsare at same distance from the centre of the ring, the bar magnet M_{1} has given a velocity 2 V while M_{2} is given velocity V in the direction as shown in thefigure.

Thedirection of induced current inthering as seen fromXX fromthis moment to themoment till bar magnets collideis

1) always clockwise
2) always anticlockwise
3) first dockwise, and thenanticlockwise
4) first anti-clockwise, and thenclockwise
39. Two identical ciruclar loops of metal wire are lying on a table without touching each other. L oop A carries a current which increases with time. In response, the loop B
1) remains stationary
2) is attracted by theloop A
3) is repelled by theloop A
4) rotatesabout its CM , withCM fixed
40. A metallic square loop $A B C D$ is moving in its own plane with velocity v in a uniform magnetic field perpendicular to its planeas shown in the figure. Electric field is induced.
1) inAD, but not inBC
2) in $B C$, but not inAD
3) nether in $A D$ nor in $B C$
4) inboth $A D$ and $B C$
41. Two circular coils can be arranged in any of the threesituations shown in the figure. Their mutual inducatnce will be

(A)

(B)

(C)
1) maximuminsituation (A) 2)maximuminsituation (B)
2) maximuminsituation(C) 4) thesameinal situations
42. Asshown in the figure, P and Q aretwo coaxil conducting loops separated by some distance. W hen the switch Sisclosed, a clockwise current I_{p} flows in P (as seen by E) and an induced current $I_{Q_{1}}$ flows in Q. The switch re mains closed for a long time. When S is opened, a current $I_{Q_{2}}$ flows in Q. Then the direction $I_{Q_{1}}$ and $I_{Q_{2}}$ (as seen by E) are
1) respectively clockwiseand anticlockwise
2) bothclockwise
3) both anticlockwise
4) respectively antidlockwiseandclockwise
43. The variation of induced emf (e) with time
(t) in a coil if

a short bar magnet is moved along axis of the coil shown with a constant velocity is best represented as

1) $I_{1}>I_{2}$
2) $I_{1}<I_{2}$
3) I_{1} is in the direction ba and I_{2} is in the direction cd

4) I_{1} is in thedirection $a b$ and I_{2} is in thedirection dc
46. A coil is suspended in a uniform magnetic field with the plane of the coil parallel to the magnetic lines of force. W hen a current is passed through the coil, it starts oscillating; it is very difficult to stop. But if an aluminium plate is placed near to the coil, it stops. This is due to 1) development of air current when the plate is placed
2) induction of electrical chargeontheplate
3) shileding of magnetic lines of forceas aluminium is aparamagnetic material
4) dectromegneic induction in thealuminiumplate giving riseto electromagnetic damping
47. Which of the following units denotes the dimensions $\left[M L^{2} / Q^{2}\right]$, where Q denotes the electric charge?
1) $\mathrm{Wb} / \mathrm{m}^{2}$
2)herry (
(H) 3) $\mathrm{H} / \mathrm{m}^{2}$
2) weber (Wb)
48. A rod of length \mid rotates with a small but uniform angular velocity ω about its perpendicular bisector. A uniform magnetic field B exists parallel to the axis of rotation. The potential difference between the centre of the rod and an end is
1) zero
2) $1 / 8 \omega \mathrm{Bl}^{2}$
3) $1 / 2 \omega \mathrm{Bl}^{2}$
4) $\left.B \omega\right|^{2}$
49. A rod of length | rotates with a uniform angular velocity ω about its perpendicular bisector. A uniform magnetic field B exists parallel to the axis of rotation. Thepotential difference between the two ends of the rod is
1) zero
2) $1 / 2 \mathrm{Bl} \omega^{2}$
3) $\mathrm{Bl} \omega^{2}$
4) $2 \mathrm{Bl} \omega^{2}$
50. C onsider the situation shown in figure. If the switch is closed and after some time it is opened again, the closed loop will show
1) anarticlockwisecurrent-pulse
2) aclockwisecurrent-pulse
3) anantidockwisecurrent-pulseand thenaclock-wisecurrent-pulse
4) a clockwise current-pulse and then an anticlockwisecurrert-pulse
51. A bar magnet is released from rest along the axis of a very long, vertical copper tube. After some time the magnet
1) will stop in thetube
2) will movewithalmost contantspeed
3) will movewithanaccelerationg 4) will oscillate

ASSERTION \& REASON

1) Both A and R aretrue and R is the correct explanation of A

2) Both A and R aretrue and R is not thecorrect explanation of A
3) A istruebut R isfalse 4) Aisfalsebut R istrue
52. Assertion : Magnetic flux is a vector qunatity Reason: Value of magnetic flux can be positive, negativeorzero
53. A ssertion : Lenz' a law violates the principle of conservation of energy
R eason: Induced enf alwaysopposethechange inmagnetic fluxresponsiblefor its production
54. Assertion: When number of turns in a coil is doubled, coefficient of self-inductance of the coil becomes 4 times.
Reason: This is because $\mathrm{L} \propto \mathrm{N}^{2}$
55. A ssertion : Theinduced enf and current will be same in two identical loops of copper and aluminium, when rotated with same speed in the samemagneic field.
Reason: Mutud induction does not dependonthe orientation of thecoils
56. A ssertion : Whentwo coils are wound on each other, the mutual induction between the coils is meximum
Reason: Mutual induction does not dependonthe orientation of thecoils.
57. A ssertion (A): Only a changeinmagnetic flux will maintainaninduced current inaclosed coil.
Reason (\mathbf{R}): Thepresenceof largemagnetic flux through a coil maintains a current in the coil if the coil iscontinuous.
58. M agnetic flux in a circular coil of resistance 10Ω changes with time as shown in figure. Symbol \otimes indicates a direction perpendicular to paper inwards. M atch the following:

Table-1
Table-2

1) At 1 s is induced current isp) clockwise
2) At 5 sinduced current is q) anticlockwise
3) At 9sinduced current is r) zero
4) At 15sinduced current is
s) 2 A
t) None
5) a-q; b-r; c-p; d-q
6) $a-p ; b-r ; c-q ; d-p$
7) ar; b-p; c-q; d-q
8) a-p; b-r; c-s; d-q
59. Three coils are placed infront of each other as shown. Currents in 1 and 2 are in same direction, whilethat in 3 isin oppositedirection. M atch the following table.

Table-1
a) When current is increased
b) When current in

2 is increased
c) When current in

3 is increased

1) $a r ; b-r ; c-p, q$
2) $a-q ; b-q ; c-r$
C.U.Q-KEY
3) 4
4) 4
5) 1
6) 4
7) 4
8) 2
9) 2
10) 1
11) 2
12) 1
13) 4
14) 3
15) 2
16) 4 15) 4
17) 1
18) 4
19) 4
20) 4
21) 3
22) 3
23) 3
24) 4
25) 4
26) 3
27) 1
2 28) 3
28) 3
38
31
29) 1
30) 4
31) 4 35) 2
32) 4
33) 2
34) 2
35) 4
36) 1 42) 443) 2 44) 3 45) 4 46) 4 47) 2 48) 2
37) 1 50) 4 51) 2 52) 4 53) 4 54) 1 55) 3 56) 3
38) 3 58) 1 59) 1

LEVEL-I (C.W)

MAGNETIC FLUX \& FARADY'S LAWS, INDUCEDEMF,CURRENT ANDCHARGE

1. A field of strength $5 \times 10^{4} / \pi$ ampere turns / meter acts at right angles to the coil of 50 turns of area $10^{-2} \mathrm{~m}^{2}$. Thecoil is removed from thefield in 0.1 second. Then the induced em.f in the coil is
1) 0.1 V
2) 0.2 V
3) 1.96 V
4) 0.98 V
2. A coil has 1,000 turns and $500 \mathrm{~cm}^{2}$ as its area. The plane of the coil is placed at right angles to a magnetic induction field of $2 \times 10^{-5} \mathrm{web} /$ m^{2}. The coil is rotated through 180° in 0.2 seconds. The average emf induced in the coil, in milli volts, is:
1) 5
2) 10
3) 15
4) 20
3. A square loop of side 22 cm is changed to a circle in time 0.4 sec with its plane normal to a magnetic field 0.2 T . The emf induced is
1) +6.6 mv
2) -6.6 mv
3) +13.2 mv
4) -13.2 mv
4. A coil of $\mathbf{1 2 0 0}$ turns and mean area of $\mathbf{5 0 0}$ cm^{2} is held perpendicular to a uniform magnetic field of induction $4 \times 10^{-4} \mathrm{~T}$. The resistance of the coil is 20 ohms. When the coil is rotated through 180° in the magnetic field in 0.1 seconds the average electric current (in mA) induced is:
1) 12
2) 24
3) 36
4) 48
5. A closed coil with a resistance R is placed in a magnetic field. The flux linked with the coil is ϕ. If the magnetic field is suddenly reversed in direction, the charge that flowsthrough the coil will be
1) $\phi / 2 R$
2) ϕ / R
3) $2 \phi / R$
4) zero

MOTIONAL E.M.F

6. An aeroplane with wing span 50 m is flying horizontally with a speed of $360 \mathrm{~km} / \mathrm{hr}$ over a place where the vertical component of the earth's magnetic field is $2 \times 10^{-4} \mathrm{~W} \mathrm{~b} / \mathrm{m}^{2}$. The potential difference between the tips of the wings would be:
1) 0.1 V
2) 1.0 V
3) 0.2 V
4) 0.01 V
7. The horizontal component of the earth's magnetic field at a place is $3 \times 10^{-4} \mathrm{~T}$ and the dip is $\theta=\tan ^{-1}(4 / 3)$. A metal rod of length 0.25 m placed in the north-south position is moved at a constant speed of $10 \mathrm{~cm} / \mathrm{s}$ towards the east. The e.m.f induced in the rod will be:
1) zero
2) 1 mV
3) 5 mV
4) 10 mV
8. A metal bar of length 1 m falls from rest under theaction of gravity remaining horizontal with its ends in east-west direction. The induced e.m.f in it at the instant when it has fallen for 10 s is $\quad\left(B_{\mathrm{H}}=1.7 \times 10^{-5} \mathrm{~T}\right.$ and $\left.\mathrm{g}=10 \mathrm{~ms}^{2}\right)$
1) 2.5 mV
2) 3.2 mV
3) 1.7 mV
4) 0.5 mV
9. A thin semicircular conducting ring of radius R is falling with its plane vertical in a horizontal magnetic induction B (figure). At the position M NQ the speed of the ring is V . The potential difference developed across the ring is:

1) zero
2) $B V \pi R^{2} / V$ and M is at higher potential
3) $\pi \mathrm{RBV}$ and Q is at higher potential
4) $2 R B V$ and Q is at higher potential
10. Two thick rods $A B, C D$ are placed parallel to each other at a distance l. their ends are joined to a resistance R. A magnetic field of induction B is applied perpendicular to the plane containing the rods. If the rods are vertical, the terminal uniform velocity of the rod PQ of mass m is given by

1) $\frac{\mathrm{mg} \cdot \mathrm{R}}{\left.\mathrm{B}^{2}\right|^{2}}$
2) $\frac{\mathrm{mg} \cdot \mathrm{R}}{\mathrm{Bl}}$
3) $\frac{\mathrm{mg}}{\mathrm{BIR}}$
4) $\frac{\mathrm{mgl}}{\mathrm{BR}}$
11. A conducting ring of radius ' r ' is rolling without slipping with a constant angular velocity ω (figure). If the magnetic field strength is B and is directed into the page then the emf induced across PQ is
1) $\mathrm{B} \omega \mathrm{r}^{2}$
2) $\frac{B \omega r^{2}}{\pi^{2} r^{2} B \omega}$
3) $4 \mathrm{~B} \omega \mathrm{r}^{2}$
4) $\frac{\pi^{2} r^{2} B \omega}{8}$
5) $\pi R^{2} N B B_{0} \omega$
6) $3 \pi R^{2} \mathrm{NB}_{0} \omega$
7) $\frac{\pi \mathrm{R}^{2} \mathrm{NB}_{0}}{\omega}$
8) $\frac{\pi R^{2} N B_{0} \omega}{3}$
17. A uniform but time-varying magnetic field $B(t)$ exists in a circular region of radius a and is directed into the plane of the paper as shown. The magnitude of the induced electirc field at point p at a distance r from the centre of the circular region
1) is zero 2) decreases as $1 / r$
2) increases as r
3) decreases $1 / r^{2}$

SELFINDUCTION \& MUTUAL

INDUCTION
18. A coil has self inductance of 0.01 H . The current through it is allowed to change at the rate of 1 A in $10^{-2} \mathrm{~s}$. The induced emf is

1) 1 V
2) 2 V
3) 3 V
4) 4 V
19. The average self-induced emf in a 25 mH solenoid when the current in it falls from 0.2 A to 0 A in 0.01 second, is
1) 0.05 V
2) 0.5 V
3) 500 V
4) 50 V
20. Two inductors each of inductance L are joined in parallel. Their equivalent inductance is
1) zero
2) 2 L
3) $\mathrm{L} / 2$
4) L
21. A coil of 100 turns with a current of 5A produced a magnetic flux of $1 \mu \mathrm{~W}$ bad each turn of the coil. The coefficient of self induction is
1) $10 \mu \mathrm{H}$
2) $20 \mu \mathrm{H}$
3) 30μ
4) $40 \mu \mathrm{H}$
16. A flat circular coil having \mathbf{N} turns (tightly wounD) is placed in a time varying magnetic field $B=B_{0} \sin \omega t$. The outer radius of the coil is R. Determine the maximum value of the induced emf in the circuit.
17. Two coils are at fixed locations. W hen coil 1 has no current and the current in coil 2 increases at the rate of $15.0 \mathrm{~A} / \mathrm{s}$, the emf in coil 1 is 25.0 mV , when coil 2 has no current and coil 1 has a current of 3.6 A , the flux linkage in coil 2 is
1) 16 mWb
2) 10 mWb
3) 4.00 mWb
4) 6.00 mWb

D.C TRANSIENT CIRCUITS

24. A coil of inductance 0.20 H is connected in series with a switch and a cell of emf 1.6 V . Thetotal resistance of the circuit is 4Ω. W hat is the initial rate of growth of the current when the switch is closed?
1) $\left.\left.\left.0.050 \mathrm{As}^{-1} 2\right) 0.40 \mathrm{As}^{-13}\right) 0.13 \mathrm{As}^{-1} 4\right) 8.0 \mathrm{As}^{-1}$
25. Two inductance coils made of different metal wires are having the same inductance. But their time constants are in the ratio 1:2. Then the ratio of their resistances is
1) $1: 2$
2) $1: \sqrt{2}$
3) $\sqrt{2}: 1$
4) $2: 1$
26. Thetime constant of an inductor is τ_{1}. When a pure resistor of $R \Omega$ is connected in series with it, the time constant is found to decrease to $\tau_{2^{\prime}}$. The internal resistance of the inductor is
1) $\frac{\mathrm{R} \tau_{2}}{\tau_{1}-\tau_{2}}$
2) $\frac{R \tau_{1}}{\tau_{1}-\tau_{2}}$
3) $\frac{R\left(\tau_{1}-\tau_{2}\right)}{\tau_{1}}$
4) $\frac{R\left(\tau_{1}-\tau_{2}\right)}{\tau_{2}}$

LEVEL-I (C.W)-KEY

1) 1 02) 2 03) 2 04) 2 05) 3 06) 2 07) 2
2) 3 09) 4 10) 1 11) 1 12) 1 13) 1 14) 1
3) 4 16) 4 17) 2 18) 1 19) 2 20) 3 21) 2
4) 4 23) 4 24) 4 25) 4 26) 1

LEVEL-I (C.W)-HINTS

1. $\mathbf{B}=\mu_{0} \mathbf{H}=\frac{\mu_{0} \times 5 \times 10^{4}}{\pi}$
$\mathrm{e}=\frac{\mathrm{NBA}}{\text { time }}=\frac{50 \times 2 \times 10^{-2} \times 10^{-2}}{0.1}=0.11$
2. $e=\frac{2 N B A}{t}$
3. $\mathrm{e}=-\mathrm{B} \frac{\Delta \mathrm{A}}{\Delta \mathrm{t}}$
4. $E=\frac{2 N B A}{t}, i=\frac{E}{R}$
5. $\mathrm{q}=\frac{\mathrm{d} \phi}{\mathrm{R}}$
6. $e=B_{H} \operatorname{lv}$
7. $\mathrm{e}=\mathrm{B}_{\mathrm{V}} \mathrm{lv} \tan \theta=\frac{\mathrm{B}_{\mathrm{V}}}{\mathrm{B}_{\mathrm{H}}}$
8. $e=B_{H} \operatorname{lv}$ where $v=g t$
9. $m g=$ Bil and $i=\frac{B I v_{T}}{R}$
10. $|\overrightarrow{\mathrm{E}}|=\frac{\mathrm{BI}^{2}}{2} \omega, \quad \mathrm{I}=\sqrt{2} \mathrm{r}$

12 .E.M.F is independent of no of spokes here
13. $\mathrm{e}=\frac{1}{2} \mathrm{BR}^{2} \omega$ where $\omega=2 \pi \mathrm{f}$
14. $e=\frac{1}{2} B R^{2} \omega$ where $\omega=2 \pi \mathrm{f}$
15. The emf generated would be maximum when flux(cutting) would be maximum i.e., angle betweena area vector of coil and magnetic field is 0°. The exf generated is given by [as a function of time]

$$
\mathrm{e}=\mathrm{NBA} \omega \cos \omega \mathrm{t} \Rightarrow \mathrm{e}_{\max }=\mathrm{NAB} \omega
$$

17. $\int \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{d}}=\left|\frac{\mathrm{d} \phi}{\mathrm{dt}}\right| ;=\mathrm{S}\left|\frac{\mathrm{dB}}{\mathrm{dt}}\right|$
or $E(2 \pi r)=\pi a^{2}\left|\frac{d B}{d t}\right|$ for $r \geq a ; \therefore E=\frac{a^{2}}{2 r}\left|\frac{d B}{d t}\right|$
\therefore induced electric field $\propto \frac{1}{r}$; for $\mathrm{r} \leq \mathrm{a}$

$$
\begin{aligned}
& E(2 \pi r)=\pi r^{2}\left|\frac{d B}{d t}\right| \text { or } E=\frac{r}{2}\left|\frac{d B}{d t}\right| \text { or } E \propto r \\
& \text { At } r=a, E=\frac{a}{2}\left|\frac{d B}{d t}\right|
\end{aligned}
$$

Therefore, variation of E with r (distancefrom centre) will be as follows
18. $\mathrm{e}=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}$
19. $\mathrm{e}=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}$
20. $\mathrm{L}_{\mathrm{p}}=\frac{\mathrm{L}_{1} \mathrm{~L}_{2}}{\mathrm{~L}_{1}+\mathrm{L}_{2}}$
21. $n \phi=\mathrm{Li}$
22. $e=-L\left(\frac{d i}{d t}\right)$
23. Coefficient of mutual inductance M is given by $|M|=\frac{e_{1}}{\left(d i_{2} / d t\right)}=\frac{\phi_{2}}{\mathrm{i}_{1}}$
$\therefore \phi_{2}=\frac{\mathrm{ei}_{1}}{\left(\mathrm{di}_{2} / \mathrm{dt}\right)}=\frac{\left(25.0 \times 10^{-3}\right)(3.6)}{(15)}$
24. $\mathrm{V}=\mathrm{RI}+\mathrm{L} \frac{\mathrm{dl}}{\mathrm{dt}}$, att $=0, \mathrm{I}=0$, thus we have $\frac{\mathrm{dl}}{\mathrm{dt}}=\frac{\mathrm{V}}{\mathrm{L}}=\frac{1.6}{0.2}=8 \mathrm{~A} / \mathrm{s}$
25. $\frac{t_{1}}{t_{2}}=\frac{R_{2}}{R_{1}}$
26. $\quad \tau_{1}=\frac{L}{r} ; \quad \tau_{2}=\frac{L}{R+r}$ Solve for r from the above equations

LEVEL - I (H.W)

MAGNETIC FLUXAND MOTIONALEMF

1. In a coil of area $10 \mathrm{~cm}^{2}$ and 10 turns with magnetic field directed perpendicular to the plane and is changing at the rate of 10^{8} gauss/ second. The resistance of the coil is 20Ω. The current in the coil will be
1) 0.5 A
2) 5 A
3) 50 A
4) $5 \times 10^{8} \mathrm{~A}$
2. A magnetic flux of 500 micro-webers passing through a 200 turns coil is reversed in 20×10^{-3} seconds. The average emf induced in the coil in volts, is :
1) 2.5
2) 5.0
3) 7.5
4) 10.0
3. A rectangular coil of 200 turns and area $100 \mathrm{~cm}^{2}$ is kept perpendicular to a uniform magnetic field of induction 0.25 tesla. If the field is reversed in direction in 0.01 second, the average induced emf in the coil is
1) $10^{6} \mathrm{~V}$
2) $10^{4} \mathrm{~V}$
3) $10^{2} \mathrm{~V}$
4) zero
4. A coil having an area $2 \mathrm{~m}^{2}$ is placed in a magnetic field which changes from 1W b/ m^{2} to 4W b/ m^{2} in an interval of 2 second. The average e.m.f. induced in the coil will be
1) 4 V
2)3V
2) 1.5 V
4)2V
5. A flip coil consists of N turns of circular coils which lie in a uniform magnetic field. Plane of the coils is perpendicular to the magnetic field as shown in figure. The coil is connected to a current integrator which measures the total charge passing through it. The coil is turned through 180° about the diameter. The charge passing through the coil is
1) $\frac{N B A}{R}$
2) $\frac{\sqrt{3} N B A}{2 R}$
3) $\frac{N B A}{\sqrt{2} R}$
4) $\frac{2 N B A}{R}$

6. A conductor $A B$ of length |moves in xyplane with velocity $\vec{v}=v_{0}(\hat{i}-\hat{j})$. A magnetic field $\vec{B}=B_{0}(\hat{i}+\hat{j})$ exists in the region. The induced emf is
1) zero
2) $2 B_{0} \mid v_{0}$
3) $B_{0} \mid v_{0}$
4) $\sqrt{2} \mathrm{~B}_{0} \mid \mathrm{v}_{0}$
7. To measure the field ' B ' between the poles of an electromagnet, a small test loop of area 1 cm^{2}, resistance 10Ω and 20 turns is pulled out of it. A galvanometer shows that a total charge of $2 \mu \mathrm{C}$ passed through the loop. The value of ' B ' is
1) 0.001 T
2) 0.01 T
3) 0.1 T
4) 1.0 T
8. A thin circular ring of area A is perpendicular to uniform magnetic field of induction B. A small cut is made in the ring and a galvanometer is connected across the ends such that the total resistance of circuit is R. When the ring is suddenly squeezed to zero area, the charge flowing through the galvanometer is
1) $\frac{B R}{A}$
2) $\frac{A B}{R}$
3) $A B R$
4) $\frac{B^{2} A}{R^{2}}$
9. A short- circuited coil is placed in a time varying magnetic field. Electrical power is dissipated due to the current induced in the coil. If the number of turns wereto bequadrupled (four times) and wire radius halved, the electrical power dissipated would be
1) halved2) the same3) doubled 4) quadrupled

MOTIONAL E.M.F

10. A conducting square looop of side L and resistance R_{R} movesin its planewith a uniform velocity \vee perpendicular to one of tis sides. A magnetic induction B, constant in time and space, pointing perpendicular to and into the plane of the loop exists every where.

The current induced in the loop is

1) BLv/R clock wise
2) $B L v / R$ anticlockwise

3) $2 B L v / R$ anticlockwise
4) zero
11. A metal rod moves at a constant velocity in a direction perpendiuclar to its length. A constant uniform magnetic field exists in space in a direction perpendicular to therod as well as its velocity. Select the correct statement (s) from the following.
1) Theentirerod is at the same electric potential
2) There is an electric field in the rod
3) The electric potential is highest at the centre of the rod and decreese towards its ends
4) The electric potential is lowest at the centre of the rod and increases towards its ends
12. A thin flexible wire of length L is connected to two adjacent fixed points and carries a current | in the clockwisedirection, as shown in the figure. When the system is put in a uniform magnetic field of strength B going into the plane of the paper, the wire takes the shape of a circle. The tension in the wire is

1) IBL
2) $\frac{\mathrm{IBL}}{\pi}$
3) $\frac{\mathrm{IBL}}{2 \pi}$
4) $\frac{\mathrm{IBL}}{4 \pi}$

SELF INDUCTION \& MUTUAL INDUCTION

13. A coil has an inductance of 0.05 H and 100 turns and 0.02A current is passed through it. Flux linked with coil is
1) $10^{-2} \mathrm{~Wb}$
2) $\left.10^{-3} \mathrm{~Wb} 3\right) 10^{-4} \mathrm{~Wb}$
3) $10^{-5} \mathrm{~Wb}$
14. A current of $2 A$ is increasing at the rate of $4 \mathrm{~A} / \mathrm{s}$ through a coil of inductance 2 H . The energy stored in the inductor per unit time is
1) 2 W
2) 1 W
3) 16 W
4) 4 W
15. The current decays from 5 A to 2 A in 0.01 s in a coil. The emf induced in a coil nearby it is 30 V . The mutual inductance between the coils is
1) 1.0 H
2) 0.1 H
3) 0.001 H
4) 10 H
16. A varying current in a coil change from 10A to 0 A in 0.5 sec . If the average emf induced in the coil is 220 V , the self inductance of the coil is
1) 5 H
2) 6 H
3) 11 H
4) 12 H
17. A n air - cored solenoid is of length 0.3 m area of cross section $1.2 \times 10^{-3} \mathrm{~m}^{-2}$ and has 2500 urns. A round its central section, a coil of 350 turns is wound. The solenoid and the coil are electrically insulated from each other. Calculate the emf induced in the coil if the initial current of 3A in the solenoid is reversed in 0.25 s .
1)0.1056V
2) 1.056 V
3) 10.56 V
4) 0.01056 V
18. A solenoid of length 50 cm with 20 turns per centimetre and area of cross-section $40 \mathrm{~cm}^{2}$ completely surroundsanother coaxial solenoid of the same length, area of cross-section $25 \mathrm{~cm}^{2}$ with 25 turns per centimetre. Calculate the mutual inductance of the system.
1) 9.7 mH
2) 7.9 mH
3) 8.9 mH
4) 6.8 mH
19. The current in a coil is changed from 5 A to 10 A in $10^{-2} \mathrm{~s}$. An emf of 50 mV is induced in coil near by it. The mutual inductance of two coils is
1) $100 \mu \mathrm{H}$
2) $200 \mu \mathrm{H}$
3) $300 \mu \mathrm{H}$
4) $400 \mu \mathrm{H}$
20. A small square loop of wire of side | is placed inside a large square loop of wire of side $L(L \gg I)$. The loops are coplanar and their centres coincide. Themutual inductance of the system is proportional to
1) I / L
2) I^{2} / L
3) L / I
4) L^{2} / I

L-R AND C-R CIRCUITS (D.C.)

21. A coil is connected to a battery of 12 V emf and negligible internal resistance. The current in the solenoid grows to 63\% of its final steady state value in 0.3
s. If the final steady state current is $\mathbf{0 . 6}$ A , the inductance of the solenoid is
1) 0.6 H
2) 6.0 H
3) 0.015 H
4) 0.15 H
22. A coil of inductane 8.4 mH and resistance 6Ω is connected to a 12 V battery. The current in the coil is 1A at approximately the time
1) 500 s
2) 20 s
3) 35 ms
4) 1 ms
23. An ideal coil of 10 H is connected series with a resistance of 5Ω and a battery of 5 V .2 s after the connection is made, the current flowing (in ampere) in the circuit is
1) ($1-e$)
2) e
3) e^{-1}
4) $\left(1-e^{-1}\right)$

LEVEL-I (H.W) - KEY

1) 2 02) 403$) 304(205) 406) 107) 2$
2) 2 09) 4 10) 4 11) 2 12) 3 13) 414) 3
3) 2 16) 3 17) 1 18) 2 19) 1 20) 2 21) 2
4) 4 23) 4

LEVEL-I - (H.W) - HINTS

1. $\mathrm{i}=\frac{1}{\mathrm{R}} \mathrm{NA} \cdot \frac{\mathrm{dB}}{\mathrm{dt}}=\frac{1}{20} \times 10 \times 10^{-3} \times 10^{4}$
2. $\mathrm{e}=\mathrm{N} \frac{\mathrm{d} \phi}{\mathrm{dt}}$
3. $\mathrm{e}=\frac{-\mathrm{NA}\left(\mathrm{B}_{2}-\mathrm{B}_{1}\right)}{\text { time }}=\frac{-\mathrm{NA}(-\mathrm{B}-\mathrm{B})}{\text { time }}=\frac{2 \mathrm{NAB}}{\text { time }}$
4. $e=A \frac{d B}{d t}$
5. Initial flux through the coil, $\phi_{\mathrm{Bi}}=+$ NBA Final flux through the coil, $\phi_{\mathrm{Bi}}=+$ NBA
When the coil is turned through 180° its flux reverses; the angle between magnetic field and area vector is reversed.
$\Delta \phi_{\mathrm{B}}=\phi_{\mathrm{Bf}}-\phi_{\mathrm{Bi}}=-\mathrm{NBA}-(\mathrm{NBA})=-2 \mathrm{NBA}$
$\mathrm{Q}=\frac{\Delta \phi_{\mathrm{B}}}{\mathrm{R}}=\frac{2 \mathrm{NBA}}{\mathrm{R}}$
6. $\overrightarrow{\mathrm{I}}, \overrightarrow{\mathrm{v}}$ and $\overrightarrow{\mathrm{B}}$ are coplanar.
7. $\mathrm{q}=\frac{\mathrm{e}}{\mathrm{R}} d t=\frac{\left(\mathrm{B}_{1}-\mathrm{B}_{2}\right) N A}{\mathrm{R}}$
$2 \mu \mathrm{C}=\frac{(\mathrm{B}-0) 20 \times 10^{-4}}{10}=0.01 \mathrm{I}$
8. $\mathrm{Q}=\frac{\Delta \phi}{\mathrm{R}}-\frac{\phi_{2}-\phi_{1}}{\mathrm{R}}=\frac{\mathrm{BA}-0}{\mathrm{R}}=\frac{\mathrm{BA}}{\mathrm{R}}$
$=6 \times 10^{-3}=6 \mathrm{mWb}$
9. \quad Power $P=\frac{e^{2}}{R}$

Here, $\mathrm{e}=$ induced enf $=-\left(\frac{\mathrm{d} \phi}{\mathrm{dt}}\right)$ where $\phi=$ NBA
$e=-N A\left(\frac{d B}{d t}\right)$; Also, $R \propto \frac{1}{r^{2}}$
Where $R=$ resistance , $r=$ radius, I=length
$\therefore \mathrm{P} \propto \mathrm{N}^{2} \mathrm{r}^{2} ; \therefore \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=4$
10. Net changein magnetic flux passing through the coil is zero.
\therefore Current(of emf) induced in the loop is zero
11. A motional enf, $\mathrm{e}=\mathrm{Blv}$ is induced in the rod. Or we can say a potential difference is induced between the tow ends of the rod AB, with A at higher potential and B at lower potential. Due to this potential difference, there is an electric fied in the rod.
12. $\mathrm{L}=2 \pi \mathrm{R} ; \quad \therefore \mathrm{R}=\frac{\mathrm{L}}{2 \pi} ; 2 \mathrm{~T} \sin (\mathrm{~d} \theta)=\mathrm{d} \theta$

For small angles, $\sin (\mathrm{d} \theta)=\mathrm{d} \theta$
$\therefore 2 \mathrm{~T}(\mathrm{~d} \theta)=\mathrm{I}(\mathrm{dL}) \mathrm{B} \sin 90^{\circ} ;=\mathrm{I}(2 \mathrm{R} . \mathrm{d} \theta) . \mathrm{B}$
$\therefore \mathrm{T}=\mathrm{IRB}=\frac{\mathrm{ILB}}{2 \pi} ; \therefore$ Correct option is (c)
13. $\mathrm{n} \phi=\mathrm{Li}$
14. $\mathrm{U}=\frac{1}{2} \mathrm{Li}^{2} ; \mathrm{P}=\frac{\mathrm{dU}}{\mathrm{dt}}$
15. $e=-M\left(\frac{d i}{d t}\right)$
16. $E=L \times \frac{d i}{d t}$
17. $M=\frac{\mu_{0} N_{1} N_{2} A_{2}}{l}$
18. $\mathrm{M}=\frac{\mu_{0} \mathrm{~N}_{1} \mathrm{~N}_{2} A_{2}}{\mathrm{l}}$
19. $E=M \times \frac{d i}{d t}$
20. Magnetic fied produced by a current i in alarge square loop at its centre
$B \propto \frac{i}{L}$
say $B=K \frac{i}{L}$
\therefore Magnetic flux linked with smaller looop,
$\phi=$ B.S $\quad \phi=\left(\mathrm{K} \frac{\mathrm{i}}{\mathrm{L}}\right)\left(\mathrm{I}^{2}\right)$
Therefore, the mutual inductance $M=\frac{\phi}{\mathrm{i}}=\mathrm{K} \frac{\mathrm{I}^{2}}{\mathrm{~L}}$ or $\mathrm{M} \propto \frac{\mathrm{I}^{2}}{\mathrm{~L}}$
21. $\tau=\frac{\mathrm{L}}{\mathrm{R}}=\frac{\mathrm{Li}}{\mathrm{V}}$
22. Thecurrent-time $(i-t)$ equation in $L-R$ dircuit is given by [Growth of current in $L-R$ circuit]
$i=i_{0}\left(1-e^{-i / t_{\mathrm{L}}}\right)$
Where $\mathrm{i}_{0}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{12}{6}=2 \mathrm{~A}$ and $\mathrm{t}_{\mathrm{L}}=\frac{\mathrm{L}}{\mathrm{R}}=\frac{8.4 \times 10^{-3}}{6}$ and $i=1 A ; t=$?
Substituting these values in Eq. (i), we get $\mathrm{t}=0.97 \times 10^{-3} \mathrm{~s}$ or $\mathrm{t}=0.97 \mathrm{~ms} \mathrm{t}=1 \mathrm{mb}$
23. $\mathrm{I}_{0}=\frac{\mathrm{E}}{\mathrm{R}}=1 \mathrm{~A} ; \tau=\frac{\mathrm{L}}{\mathrm{R}}=\frac{10}{5}=2 \mathrm{~s} ; \therefore\left(\mathrm{I}=1-\mathrm{e}^{-1}\right) \mathrm{A}$

