For More Study Material

For Class 9 Science	$\underline{\text { Click here }}$
For Class 9 Mathematics	$\underline{\text { Click here }}$
For Class 10 Science	$\underline{\text { Click here }}$
For Class 10 Mathematics	$\underline{\text { Click here }}$
For Class 11 Physics	$\underline{\text { Click here }}$
For Class 11 Chemistry	$\underline{\text { Click here }}$
For Class 11 Biology	$\underline{\text { Click here }}$
For Class 11 mathematics	$\underline{\text { Click here }}$
For Class 12 Physics	$\underline{\text { Click here }}$
For Class 12 Chemistry	$\underline{\text { Click here }}$
For Class 12 Biology	$\underline{\text { Click here }}$
For Class 12 Mathematics	

DISTANCE AND DISPLACEMENT

1. The numerical ratio of displacement to distance is
1) always less than 1 2) always greater than 1
2) always equal to 1
3) may beless than 1 or equal to one
2. The location of a particle is changed. W hat can we say about the displacement and distance covered by the particle?
1) Both cannot bezero
2) Oneof thetwo may bezero
3) Both must bezero 4) Bothmust beequal
3. C onsider the motion of the tip of the minute hand of a clock. In one hour
a) the displacement is zero
b) the distance covered is zero
c) the average speed is zero
d) the average velocity is zero
1) a\& bare correct
2) $a, b \& c$ are correct
3) a\& d arecorrect
4) b,c\& darecorrect

SPEED AND VELOCITY

4. The numerical value of the ratio of average velocity to average speed is
1) al ways less than one 2) always equal to one
2) al ways morethan one
3) equal to or lessthan one
5. If a particlemoves in a circle describing equal angles in equal intervals of time, then the velocity vector
1) remains constant.
2) changes in magritude
3) changesindirection.
4) changes bothin magnitudeand direction.
6. In which of the following examples of motion, can the body be considered approximately a point object
a) a railway carriage moving without jerks between two stations.
b) a monkey sitting on top of a man cycling smoothly on a circular track
c) a spinning cricket ball that turns sharply on hitting theground
d) a trembling beaker that has slipped off the edge of a table
1) a, b
2) b, c
3)ac
4)b,d
7. An objectmay have
a) varying speed without having varying velocity
b) varying velocity without having varying speed
c) non zero acceleration without having varying velocity
d) non zero acceleration without having varying speed.
1) a,b\& c are correct
2) b\& darecorrect
3) a,b\& darecorrect
4) a\& d arecorrect
8. The distance travelled by a particle in a straight line motion is directly proportional to $t^{1 / 2}$, where $t=$ time elapsed. W hat is the nature of motion?
1) Increasing acceleration
2) Decreesing acceleration
3) Increasing retardation
4) Decreasing retardation

ACCELERATION

9. If a body starts from rest, then the time in which it covers a particular displacement with uniform acceleration is
1) inversel yproportional to the squareroot of the displacement
2) inversely proportional to the displacement
3) directly proportional to thedisplacement
4) directly proportional to the squareroot of the displacement
10. Check up only the correct statement in the following.
1) A body has a constant velocity and still it can haveavarying speed
2) A body has a constant speed but it can have a varying velocity
3) A body having constant speed cannot have any acceleration.
4) None of these.
11. W hen the speed of a car is u, the minimum distance over which it can be stopped is s. If the speed becomes nu, what will be the minimum distance over which it can be stopped during the same time?
1) s / n
2) ns
3) s / n^{2}
4) $n^{2} s$.
12. The distance covered by a moving body is directly proportional to the square of thetime. The acceleration of the body is
1) increasing
2) decreasing
3) zero
4) constant
13. M ark the incorrect statement for a particle going on a straight line.
1) If the velocity and accelerationhaveopposite sign, then theobject isslowing down.
2) If theposition and velocity haveoppositesign, thentheparticleis moving towards theorigin.
3) If the velocity is zero at an instant, then the acceleration should also bezero at that instant.
4) If the velocity is zero for a timeinterval, then theaccelerationis zero at any instant withinthe timeinterval.

MOTION UNDER GRAVITY

14. B_{1}, B_{2} and B_{3} are three balloons ascending with velocities $\mathrm{v}, 2 \mathrm{v}$ and 3 v , respectively. If a bomb is dropped from each when they are at the same height, then
1) bormbfrom B_{1} reaches ground first
2) bombfrom B_{2} reaches ground first
3) bombfrom B_{3} reaches ground first
4) they reachtheground simultaneously
15. The distances moved by a freely falling body during $1^{1^{\text {t }}}, 2^{\text {nd }}, 3^{\text {rd }}, n^{\text {th }}$ second of its motion are proportional to
1) even numbers
2) odd numbers
3) all integral numbers
4) squares of integral numbers
16. To reach the same height on the moon as on the earth, a body must be projected up with
1) higher velocity onthemoon.
2) lower velocity onthemoon.
3) samevelocity onthemoonand earth.
4) it depends onthemassof the body.
17. At the maximum height of a body thrown vertically up
1) velocity is not zero but acceleration iszero.
2) accelerationis notzero but velocity iszero.
3) bothaccelerationand velocity arezero.
4) bothacceleration and velocity arenotzero.
18. A ball is dropped freely while another is thrown vertically downward with an initial velocity ' v ' from the same point simultaneously. After ' t ' second they are separated by a distance of
1) $\frac{v t}{2}$
2) $\frac{1}{2} g t^{2}$
3) vt
4) $v t+\frac{1}{2} g t^{2}$
19. The average velocity of a freely falling body is numerically equal to half of theacceleration due to gravity. The velocity of the body as it reaches the ground is
1) g
2) $\frac{g}{2}$
3) $\frac{g}{\sqrt{2}}$
4) $\sqrt{2} g$
20. Two bodies of different masses are dropped simultaneously from thetop of a tower. If air resistance is proportional to the mass of the body, then,
1) theheavier body reaches theground earlier.
2) thelighter body reaches theground earlier.
3) both thebodies reachtheground simultaneously.
4) cannot bedecided.
21. A man standing in a lift falling under gravity releases a ball from his hand. As seen by him, the ball
1) fallsdown
2) remains stationary
3) goesup
4) executes SHM
22. A particleisdropped from certain height. The time taken by it to fall through successive distances of 1 m each will be
1) all equal, being equal to $\sqrt{2 / g}$ second
2) intheratio of thesquare roots of theintegers 1,2, 3,
3) in theratio of thedifferenceinthesquareroots of theintegers, i.e,
$\sqrt{1},(\sqrt{2}-\sqrt{1}),(\sqrt{3}-\sqrt{2}),(\sqrt{4}-\sqrt{3}), \ldots \ldots$
4) intheratio of thereciprocals of thesquareroots of theintegers, i.e, $\frac{1}{\sqrt{1}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \ldots \ldots .$.
23. A body, freely falling under gravity will have uniform
1)speed 2)velocity 3)momentum 4)acceleration
24. A person standing near the edge of thetop of a building throwstwo ballsA and B. The ball A isthrown vertically upward and B isthrown vertically downward with the same speed, The ball A hits the ground with a speed V_{A} and the ball B hits the ground with a speed V_{B}. then
1) $V_{A}<V_{B}$
2) $V_{A}<V_{B}$
3) $V_{A}=V_{B}$
4) therelation between V_{A} and V_{B} depends on height of thebuilding abovetheground
25. A lift iscoming from $8^{\text {th }}$ floor and isjust about to reach $4^{\text {th }}$ floor. Taking ground floor as origin and positivedirection upwardsfor all
quantities, which one of the following is correct?
1) $x<0, v<0, a>0$
2) $x>0, v<0, a<0$
3) $x>0, v<0, a>0$
4) $x>0, v>0, a<0$

GRAPHS

26. C hoose the correct statement :
1) The area of displacement- timegraph gives velocity.
2) The slope of velocity - time graph gives acceleration.
3) Theslopeof displacement- timegraph gives acceleration.
4) Theareaof velocity- timegraphgives average velocity.
27. Velocity-time graph of a body thrown vertically up is
1) astraight line
2) a parabola
3) ahyperbola
4) circle
28. Velocity - displacement graph of a freely falling body is
1) straight linepassing throughtheorigin
2) straightlineintersecting ' x ' and ' y ' axes
3) parabola
4) hyperbola
29. Displacement-timegraph of a body projected vertically up is
1) astraight line
2) a parabola
3) ahyperbola
4) acircle
30. The displacement-timegraphs of two bodies A and B are $O P$ and $O Q$ respectively. If $\angle \mathrm{POX}$ is 60° and $\angle \mathrm{QOX}$ is 45°, the ratio of the velocity of A to that of B is

1) $\sqrt{3}: \sqrt{2}$
2) $\sqrt{3}: 1$
3) $1: \sqrt{3}$
4) $3: 1$
31. If the distance travelled by a particle and corresponding time be laid off along y and x axes respectively, then the correct statement of thefollowing is
1) thecurvemay lieinfourth quadrant
2) thecurveliesinfirst quadrant
3) the curve exhibits peaks corresponding to maxima
4) thecurvemay dropas timepasses
32. In relation to a velocity - time graph
1) thecurvecan beacircle
2) the area under the curve and above the time axis between any two instants gives theaverage acceleration
3) theslopeat any instant gives therateof change of accel erationat that instant
4) the area under the curve and above the time axis givesthedisplacement
33. The displacement - time graph of a particle moving with respect to a reference point is a straight line
1)thereferencepoirt isstaionary withzero vedocity
2) theacceleration of theobject iszero
3) body moveswith uniformvelocity
4) all theabove
34. For a uniform motion
1) thevelodity-timegraphisastraightlineparalle
totimeaxis
2) theposition-timegraph is a parabola
3) the acceleration- timegraph is astraight line indined withtimeaxis
4) the position- timegraph is astraight line
35. Figure shows the displacement- time graph of a particle moving on the x-axis

1) thepartideis continuously going in positive X direction
2) theparticleisat rest
3) the velocity increeses up to atime t_{0} and then becomes constant.
4) the particlemoves at constant velocity up to a time t_{0} and thenstops.
36. The variation of quantity A with quantity B. plotted in the Fig. describes the motion of a particle in a straight line.
a) Quantity B may represent time
b) QuantityA isvelocityifmotionisuniform
c) QuantityA is displacementifmotionisuriform
d) Quantity A is velocity if motion is uniformly accelerated.

1) a, c, d
2) b, c, d
3) a, b
4) c, d
37. The displacement-time graph of a moving particle is shown in Fig. The instantaneous velocity of the particle is negativeat the point

1) D
2) F
3) C
4) E
38. Which of the following option is correct for having a straight line motion represented by displacement-time graph.

1) Theobject moves with constantly increasing velocity fromO toA thenit moves with constant velocity.
2) Velocity of theobject increases uniformly.
3) Averagevelocity iszero.
4) Thegraphshownis impossible
39. The displacement of a particle as a function of timeisshown in thefigure. Thefigureshowsthat

1) theparticlestarts winthecends Tim ve ocity but the motionis retarded and finally the particlestops
2) thevelocityof theparticleisconstant throughout
3) theacceleration of the particleis constant throughout
4) thepartidestarts with constant velocity, then motionisaccelertedand finally thepatidemoves with another constant velocity.
40. A uniform moving cricket ball isturned back by hitting it with a bat for a very short time interval.Show the variation of its acceleration with time (Takeacceleration in theback ward direction as positive)
41.

2.

3.

4.

RELATIVE VELOCITY
41. A small body isdropped from a rising balloon. A person A stands on ground, while another person B is on the balloon. C hoose the correct statement: Immediately, after the body is released.

1) A and B, both feed that the body is coming (going) down.
2) A and B, bothfeel that body is coming up.
3) A feeds that the body iscoming down, whileB fedsthatthebody is going up
4) A fedsthat the body is going up, whileB feds that thebody is going down.
42. Seeta is moving due east with a velocity of $\mathrm{v}_{1} \mathrm{~m} / \mathrm{s}$ and G eeta is moving due west with a velocity of $\mathrm{v}_{2} \mathrm{~m} / \mathrm{s}$. The velocity of Seeta with respect to G eeta is
1) $v_{1}+v_{2}$ dueeast
2) $v_{1}-v_{2}$ dueeast
3) $v_{1}-v_{2}$ duewest
4) $v_{1}+v_{2}$ duewest

C.U.Q - KEY

1) 4	2) 1	3) 3	4) 4	5) 3	6) 1
7) 2	8) 4	9) 4	10) 2	11) 4	12) 4
13) 3	14) 1	15) 2	16) 2	17) 2	18) 3
19) 1	20) 3	21) 2	22) 3	23) 4	24) 3
25) 1	$26) 2$	27) 1	28) 3	29) 2	30) 2
31) 2	$32) 4$	$33) 4$	$34) 1$	$35) 4$	$36) 1$
37) 4	$38) 3$	$39) 1$	$40) 1$	$41) 4$	42) 1

LEVEL-I (C.W)

DISPLACEMENT AND DISTANCE

1. A body is moving along the circumference of a circle of radius ' R ' and completes half of the revolution. Then, the ratio of its displacement to distance is
1) $\pi: 2$
2) $2: 1$
3) $2: \pi$
4) $1: 2$
2. A body completes one round of a circle of radius ' R ' in $\mathbf{2 0}$ second. The displacement of the body after 45 second is
1) $\frac{R}{\sqrt{2}}$
2) $\sqrt{2} R$
3) $2 \sqrt{R}$
4) $2 R$

SPEED AND VELOCITY

3. If a body covers first half of its journey with uniform speed v and the second half of the journey with uhiform speed v_{2}, then the average speed is
1) $V_{1}+v_{2}$
2) $\frac{2 v_{1} v_{2}}{v_{1}+v_{2}}$
3) $\frac{v_{1} v_{2}}{v_{1}+v_{2}}$
4) $v_{1} v_{2}$
4. A car is moving along a straight line, say $O P$ in figure. It moves from 0 to P in 18 s and return from P to Q in 6 s . W hat are the average velocity and average speed of the car in going from 0 to P and back to Q ?

1) $10 \mathrm{~ms}^{-1}, 20 \mathrm{~ms}^{-1}$
2) $20 \mathrm{~ms}^{-1}, 10 \mathrm{~ms}^{-1}$
3) $10 \mathrm{~ms}^{-1}, 10 \mathrm{~ms}^{-1}$
4) $20 \mathrm{~ms}^{-1}, 20 \mathrm{~ms}^{-1}$
5. For a body moving with uniform acceleration ' a ', initial and final velocities in a time interval ' t ' are ' u ' and ' v ' respectively. Then, its average velocity in the time interval ' t ' is
1) $\left.(v+a t) 2)\left(v-\frac{t}{2}\right) 3\right)(v-a t)$
2) $\left(u-\frac{a t}{2}\right)$

ACCELERATION

6. A body moves with a velocity of $3 \mathrm{~m} / \mathrm{s}$ due east and then turns due north to travel with the same velocity. If the total time of travel is 6 s , the acceleration of the body is
1) $\sqrt{3} \mathrm{~m} / \mathrm{s}^{2}$ towards northwest
2) $\frac{1}{\sqrt{2}} \mathrm{~m} / \mathrm{s}^{2}$ towards north west
3) $\sqrt{2} \mathrm{~m} / \mathrm{s}^{2}$ towards north eest 4) all theabove
7. If a body travels 30 m in an interval of 2 s and 50 m in the next interval of 2 s , then the acceleration of the body is
1) $\left.10 \mathrm{~m} / \mathrm{s}^{2} 2\right) 5 \mathrm{~m} / \mathrm{s}^{2}$
2) $20 \mathrm{~m} / \mathrm{s}^{2}$
3) $25 \mathrm{~m} / \mathrm{s}^{2}$
8. A bullet travelling horizontally looses $1 / 20^{\text {th }}$ of its velocity while piercing a wooden plank. Then the number of such planks required to stop the bullet is
1) 6
2) 9
3) 11
4) 13
9. If $S_{n}=2+0.4 n$ find initial velocity and acceleration
1) 2.2 units, 0.4 units
2) 2.1 units, 0.3 units
3) 1.2 units, 0.4 units
4) 2.2 units, 0.3 units
10. A particle starts moving from rest under uniform acceleration. It travels a distance ' x ' in the first two seconds and a distance ' y ' in the next two seconds. If $\mathrm{y}=\mathrm{nx}$, then $\mathrm{n}=$ (1993E)
1) 1
2) 2
3) 3
4) 4
11. A particle is moving in a straight line with initial velocity ' u ' and uniform acceleration ' a '. If the sum of thedistances travelled in $t^{\text {th }}$ and $(t+1)^{\text {th }}$ second is 100 cm , then its velocity after ' t ' seconds in cm / s is
1) 20
2) 30
3) 80
4) 50
12. A particle is moving with uniform acceleration along a straight line $A B C$. Its velocity at ' A ' and ' B ' are $6 \mathrm{~m} / \mathrm{s}$ and $9 \mathrm{~m} / \mathrm{s}$ respectively. If $A B: B C=5: 16$ then its velocity at ' C ' is
1) $9.6 \mathrm{~m} / \mathrm{s}$
2) $12 \mathrm{~m} / \mathrm{s}$
3) $15 \mathrm{~m} / \mathrm{s}$
4) $21.5 \mathrm{~m} / \mathrm{s}$
13. A car moving on a straight road accelerates from a speed of $4.1 \mathrm{~m} / \mathrm{s}$ to a speed of $6.9 \mathrm{~m} / \mathrm{s}$ in 5.0 s . Then its average acceleration is
1) $0.5 \mathrm{~m} / \mathrm{s}^{2}$ 2) $\left.\left.0.6 \mathrm{~m} / \mathrm{s}^{2} 3\right) 0.56 \mathrm{~m} / \mathrm{s}^{2} 4\right) 0.65 \mathrm{~m} / \mathrm{s}^{2}$

MOTION UNDER GRAVITY

14. A body projected vertically upwards with a velocity of $19.6 \mathrm{~m} / \mathrm{s}$ reaches a height of 19.8 m on earth. If it is projected vertically up with the same velocity on moon, then the maximum height reached by it is
1) $19.18 \mathrm{m2}$) 3.3 m
2) 9.9 m
3) 118.8 m
15. A ball is thrown straight upward with a speed v from a point h meter abovetheground. The timetaken for the ball to strike the ground is
1) $\frac{v}{g}\left[1+\sqrt{1+\frac{2 \mathrm{hg}}{\mathrm{v}^{2}}}\right]$
2) $\frac{v}{g}\left[1-\sqrt{1-\frac{2 h g}{v^{2}}}\right]$
3) $\frac{v}{g}\left[1-\sqrt{1+\frac{2 h g}{v^{2}}}\right]$
4) $\frac{v}{g}\left[2+\frac{2 \mathrm{hg}}{v^{2}}\right]$
16. A ball isdropped on the floor from a height of 10 m . It rebounds to a height of 2.5 m . If the ball is in contact with the floor for 0.01 s , then the average acceleration during contact is nearly
1) $500 \sqrt{2} \mathrm{~m} / \mathrm{s}^{2}$ upwards
2) $1800 \sqrt{2} \mathrm{~m} / \mathrm{s}^{2}$ downwards
3) $1500 \sqrt{2} \mathrm{~m} / \mathrm{s}^{2}$ upwards
4) $1500 \sqrt{2} \mathrm{~m} / \mathrm{s}^{2}$ downwards
17. A body falling from rest has a velocity ' \mathbf{v} ' after it falls through a distance ' h '. Thedistance it has to fall down further, for its velocity to become double, is times ' h '.
1) 5
2) 1
3) 2
4) 3

RELATIVE VELOCITY

18. A ball is dropped from a building of height 45 m . Simultaneously another ball is thrown up with a speed $40 \mathrm{~m} / \mathrm{s}$. The rate of change of relative speed of the balls is
1) $20 \mathrm{~ms}^{-1}$
2) $40 \mathrm{mb}^{-1}$
3) $30 \mathrm{~ms}^{-1}$ 4) $0 \mathrm{~ms}^{-1}$
19. Two cars 1 \& 2 starting from rest are moving with speeds v_{1} and $v_{2} m / s\left(v_{1}>v_{2}\right) . C$ ar 2 is ahead of car ' 1 ' by s meter when the driver of the car ' 1 ' sees car ' 2 '. W hat minimum retardation should be given to car ' 1 ' to avoid collision.
(2002A)
1) $\frac{V_{1}-V_{2}}{S}$
2) $\frac{V_{1}+V_{2}}{S}$
3) $\frac{\left(v_{1}+v_{2}\right)^{2}}{2 s}$
4) $\frac{\left(v_{1}-v_{2}\right)^{2}}{2 s}$
20. Two cars are travelling towards each other on a straight road at velocities $15 \mathrm{~m} / \mathrm{s}$ and 16 m / s respectively. W hen they are 150 m apart, both thedrivers apply the brakes and the cars decelerateat $3 \mathrm{~m} / \mathrm{s}^{2}$ and $4 \mathrm{~m} / \mathrm{s}^{2}$ until they stop. Separation between the carswhen they come to rest is
1) 86.5 m
2) 89.5 m
3) 85.5 m
4) 80.5 m

LEVEL - I (C.W) - KeY					
01) 3	02) 2	03) 2	04) 1	05) 2	06) 2
07) 2	08) 3	09) 1	10) 3	11) 4	12) 3
13) 3	14) 4	15) 1	16) 3	17) 4	18) 4
19) 4	20) 4				

LEVEL - I (C.W) - HINTS

1.

Displacement: : istance $=\pi$ R:2R
2. In 40 sec body completes two revolutions.

In 5 sec it covers $1 / 4$ th of the circle and angle
traced is $\frac{\pi}{2}$. So displacement $\mathrm{S}=2 \mathrm{R} \sin \frac{\theta}{2}$
3. Average speed $=\frac{S_{1}+S_{2}}{t_{1}+t_{2}} \Rightarrow v=\frac{2 v_{1} v_{2}}{v_{1}+v_{2}}$
4. $\mathrm{v}_{\mathrm{avg}}=\frac{\text { total displacement }}{\text { total time }}=\frac{\mathrm{S}_{1}+\mathrm{S}_{2}}{\mathrm{t}_{1}+\mathrm{t}_{2}}$
5. $\mathrm{v}_{\mathrm{avg}}=\frac{\mathrm{v}+\mathrm{u}}{2}=\frac{\mathrm{v}+\mathrm{v}-\mathrm{at}}{2}$
6.

$\mathrm{a}=\frac{\mathrm{v}-\mathrm{u}}{\mathrm{t}} \quad ; \quad \bar{v}_{\mathrm{i}}=\mathrm{v}_{1} \hat{i}, \bar{v}_{\mathrm{f}}=\mathrm{v}_{2} \hat{j}$
$\Delta \overline{\mathrm{v}}=\overline{\mathrm{v}}_{\mathrm{f}}-\overline{\mathrm{v}}_{\mathrm{i}}=\mathrm{v}_{2} \hat{\mathrm{j}}-\mathrm{v}_{1} \hat{i} \quad ; \quad \tan \theta=\frac{\mathrm{v}_{2}}{\mathrm{v}_{1}}$
7. $\quad \frac{s_{1}}{t_{1}}, \frac{s_{2}}{t_{2}} ; \quad s_{1}=u t_{1}+\frac{1}{2} t_{1}^{2}$

$$
s_{1}+s_{2}=u \times t_{1}+t_{2}+\frac{1}{2} a\left(t_{1}+t_{2}\right)^{2}
$$

8. $\frac{1}{\mathrm{n}}=\frac{1}{20} \Rightarrow \mathrm{n}=20$; no. of planks $=\frac{\mathrm{n}^{2}}{2 \mathrm{n}-1}$
9. $\mathrm{s}_{\mathrm{n}}=\mathrm{u}+\mathrm{an}-\frac{1}{2} \mathrm{a}=\left(\mathrm{u}-\frac{1}{2} \mathrm{a}\right)+\mathrm{an}$

$$
\begin{equation*}
S_{n}=2+0.4 n \tag{2}
\end{equation*}
$$

from(1) and (2) $0.4 n=a n ; u-\frac{1}{2} a=2$
10. $\quad x=\frac{1}{2} a(2)^{2} ; \quad(x+y)=\frac{1}{2} a(4)^{2}$
11. $s_{t}=u+\frac{t}{2}(2 t-1) ; \quad s_{t+1}=u+\frac{t}{2}(2 t+1)$

$$
\mathrm{s}_{\mathrm{t}}+\mathrm{s}_{\mathrm{t}+1}=100 ; \quad \mathrm{v}=\mathrm{u}+\mathrm{ft}
$$

12. $\underset{v_{1}}{\stackrel{A}{v_{1}} 5 \mathrm{~s}_{1}} \stackrel{B}{v_{2}} \mathrm{v}_{2} 16 \mathrm{x} \mathrm{v}_{3} \mathrm{C}, \quad ; a=\frac{v_{2}^{2}-v_{1}^{2}}{2 s_{1}}=\frac{v_{3}^{2}-v_{2}^{2}}{2 s_{2}}$
13. $a=\frac{v-u}{t}$
14. $h=\frac{u^{2}}{2 g} ; h \alpha \frac{1}{g} \Rightarrow \frac{h_{E}}{h_{M}}=\frac{g_{M}}{g_{E}}$
15. $\mathrm{h}=-\mathrm{vt}+\frac{1}{2} g t^{2} ; g t^{2}-2 v t-2 \mathrm{~h}=0$
16. $a=\frac{\sqrt{2 g h_{2}}-\left(-\sqrt{2 g h_{1}}\right)}{\Delta t}$ 17. $v^{2}=2 g h ; 4 v^{2}=2 g x$
17. Redativeaccelerationiszero as ' g ' is downwards for theboththebodies.
18. $u_{\mathrm{re}}=\mathrm{v}_{1}-\mathrm{v}_{2} ; \mathrm{v}_{\mathrm{re}}=0 ; \mathrm{v}_{\mathrm{re}}^{2}=\mathrm{u}_{\mathrm{re}}^{2}=2 \mathrm{as}$
19.

$$
\begin{aligned}
& \rightarrow \stackrel{u_{1}}{\mathrm{~s}_{1}} \mathrm{v}_{1}=0 \quad \mathrm{v}_{2}=0 \quad \mathrm{u}_{2} \leftarrow \\
& v_{1}^{2}-u_{1}^{2}=2 a_{1} s_{1} ; ~ v_{2}^{2}-u_{2}^{2}=2 a_{2} s_{2} \\
& \Delta s=s-\left(s_{1}+s_{2}\right) \text {. }
\end{aligned}
$$

LEVEL-I (H.W)

DISPLACEMENT AND DISTANCE

1. A body moves from one corner of an equilateral triangle of side 10 cm to the same corner along the sides. Then the distance and displacement are respectively
1) $30 \mathrm{~cm} \& 10 \mathrm{~cm}$
2) $30 \mathrm{~cm} \& 0 \mathrm{~cm}$
3) 0 cm \& 30 cm
4) $30 \mathrm{~cm} \& 30 \mathrm{~cm}$ SPEED AND VELOCITY
2. For a train that travels from one station to another at a uniform speed of $40 \mathrm{kmh}^{-1}$ and returns to final station at speed of $60 \mathrm{kmh}^{-1}$, then its average speed is
1) $98 \mathrm{~km} / \mathrm{hr}$
2) $0 \mathrm{~km} / \mathrm{hr}$
3) $50 \mathrm{~km} / \mathrm{hr}$
4) $48 \mathrm{~km} / \mathrm{hr}$
3. If the distance between the sun and the earth is $1.5 \times 10^{11} \mathrm{~m}$ and velocity of light is $3 \times 10^{8} \mathrm{~m} /$ s , then thetime taken by a light ray to reach the earth from the sun is
1) 500 s
2) 500 minute 3
3) 50 s
$5 \times 10^{3} s$

ACCELERATION

4. A body is moving with velocity $30 \mathrm{~ms}^{-1}$ towards east. A fter 10 s its velocity becomes $40 \mathrm{~ms}^{-1}$ towards north. The average acceleration of the body is [AIPM T 2011]
1) $7 \mathrm{mb}^{-2}$
2) $\sqrt{7} \mathrm{~ms}^{-2}$
3) $5 \mathrm{~ms}^{-2}$
4) $1 \mathrm{~ms}^{-2}$
5. A body starting with a velocity ' v ' returnsto its initial position after ' t ' second with the same speed, along the same line. A cceleration of the particle is
1) $\frac{-2 v}{t}$
2) zero
3) $\frac{v}{2 t}$
4) $\frac{t}{2 v}$
6. A body starting from rest moving with uniform acceleration has a displacement of 16 m in first 4 s and 9 m in first 3 s . Theacceleration of the body is
1) $1 \mathrm{~ms}^{2}$
2) $2 \mathrm{mb}^{-2}$
3) $3 \mathrm{~ms}^{-2}$
4) $4 \mathrm{~ms}^{2}$
7. A body starts from rest and moves with an uniform acceleration. The ratio of distance covered in the $\mathrm{n}^{\text {th }}$ second to the distance covered in ' n ' second is
1) $\left(\frac{2}{n}-\frac{1}{n^{2}}\right)$
2) $\left(\frac{1}{n^{2}}-\frac{1}{n}\right)$
3) $\left(\frac{2}{n^{2}}-\frac{1}{n}\right)$
4) $\frac{2}{n}+\frac{1}{n^{2}}$
8. A bus accelerates uniformly from rest and acquires a speed of 36 kmph in 10s. The acceleration is
1) $1 \mathrm{~m} / \mathrm{s}^{2}$
2) $2 \mathrm{~m} / \mathrm{s}^{2}$
3) $1 / 2 \mathrm{~m} / \mathrm{s}^{2}$
4) $3 \mathrm{~m} / \mathrm{s}^{2}$
9. Speeds of two identical cars are U and $4 U$ at a specific instant. The ratio of the respective distances in which the two cars are stopped from that instant is
1) $1: 1$
2) $1: 4$
3) $1: 8$
4) $1: 16$
10. A car moving along a straight highway with speed of $126 \mathrm{Kmh}^{-1}$ is brought to a stop with in a distance of 200 m . what is the retardation of the car
1) $3.06 \mathrm{~ms}^{-2}$
2) $4 \mathrm{~ms}^{-2}$
3) $5.06 \mathrm{~ms}^{-2}$
4) $6 \mathrm{~ms}^{-2}$ MOTION UNDER GRAVITY
11. Two balls are projected simultaneously with the same velocity ' u ' from the top of a tower, one vertically upwards and the other vertically downwards. Their respectivetimes of the journeys are t_{1} and t_{2}. At the time of reaching the ground, the ratio of their final velocities is
1) $1: 1$
2) $1: 2$
3) $2: 3$
4) $2: 1$
12. Two bodies areprojected simultaneously with the same velocity of $19.6 \mathrm{~m} / \mathrm{s}$ from the top of a tower, one vertically upwards and the other vertically downwards. As they reach the ground, thetime gap is
1) 0 s
2) 2 s
3) 4 s
4) 6 s
13. Two bodies begin to fall freely from the same height. The second one begins to fall $\tau \mathbf{s}$ after thefirst. Thetimeafter which the 1st body begins to fall, the distance between the bodies equals to I is
1) $\frac{1}{g \tau}+\frac{\tau}{2}$
2) $\frac{g \tau}{\mathrm{I}}+\tau$
3) $\frac{\tau}{\lg }+\frac{2}{\tau}$
4) $\frac{g}{1 \tau}+\frac{\tau}{2}$
14. A balloon is going upwards with velocity 12 $\mathrm{m} / \mathrm{sec}$. It releases a packet when it is at a height of 65 m from the ground. How much time the packet will take to reach the ground $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{sec}^{2}\right)$
1) 5 sec
2) 6 sec
3) 7 sec
4) 8 sec
15. A body thrown up with some initial velocity reaches a maximum height of 50 m . A nother body with double the mass thrown up with double the initial velocity will reach a maximum height of
1) 100 m
2) 200 m
3) 400 m
4) 50 m
16. The distance moved by a freely falling body (starting from rest) during the 1st, 2nd and 3rd ... nth second of its motion, are proportional to
1) $(\mathrm{n}-1)$
2) $(2 n-1)$
3) $\left(n^{2}-1\right)$
4) $(2 n-1) / n^{2}$
17. A ball released from a height ' h ' touches the ground in 't's. After $\mathrm{t} / 2 \mathrm{~s}$ since dropping, the height of thebody from the ground
1) $\frac{h}{2}$
2) $\frac{\mathrm{h}}{4}$
3) $\frac{3 \mathrm{~h}}{4}$
4) $\frac{3 \mathrm{~h}}{2}$
18. A boy standing at the top of a tower of 20 m height drops a stone A ssuming $\mathrm{g}=10 \mathrm{~ms}^{-2}$, the velocity with which it hitsthe ground is
[AIPM T 2011]
1) $20 \mathrm{~ms}^{-1}$
2) $40 \mathrm{~ms}^{-1}$
3) $5 \mathrm{mb}^{-1}$
4) $10 \mathrm{mb}^{-1}$
19. A ball thrown vertically upwards with an initial velocity of $1.4 \mathrm{~m} / \mathrm{s}$ returns in 2 s . The to-
tal displacement of the ball is
1) 22.4 cm
2) zero
3) 44.8 m
4) 33.6 m
20. A stoneis dropped from a certain height which can reach the ground in 5 s . It is stopped momentarily after 3s and then it is again released. The total time taken by the stone to reach the ground will be
1) 6 s
2) 6.5 s
3) 7 s
4) 7.5 s

RELATIVE VELOCITY

21. What are the speeds of two objects if, when they move uniformly towardseach other, they get 4 m closer in each second and when they moveuniformly in thesamedirection with the original speeds, they get 4 m closer each 10s?
1) $2.8 \mathrm{~m} / \mathrm{s}$ and $12 \mathrm{~m} / \mathrm{s}$
2) $5.2 \mathrm{~m} / \mathrm{s}$ and $4.6 \mathrm{~m} / \mathrm{s}$
3) $3.2 \mathrm{~m} / \mathrm{s}$ and $2.1 \mathrm{~m} / \mathrm{s}$
4) $2.2 \mathrm{~m} / \mathrm{s}$ and $1.8 \mathrm{~m} / \mathrm{s}$
22. Two trains areeach 50 m long moving parallel towards each other at speeds $10 \mathrm{~m} / \mathrm{s}$ and $15 \mathrm{~m} / \mathrm{s}$ respectively, at what time will they pass each other?
1) 8 s
2) 4 s
3) 2 s
4) 6 s
23. A ball is dropped from the top of a building 100 m high. At the same instant another ball is thrown upwards with a velocity of $40 \mathrm{~ms}^{-1}$ form thebottom of thebuilding. The two balls will meet after.
1) 5 s
2) 2.5 s
3) 2 s
4) 3 s

EVEL-I (H.W)-KEY

1) 2 02) 4
2) 1
3) 3 05) 1
4) 2
5) 1 08) 1
6) 4
7) 1 11) 1
8) 3
9) 1 14) 1
10) 2
11) 2 17) 3
12) 1
13) 2 20) 3
14) 4
15) 2 23) 2

LEVEL - I (H.W) -HINTS

1. Displacement =shortestdistancebetween initia pointand final point
2. $\quad v_{\text {avg }}=\frac{2 v_{1} v_{2}}{v_{1}+v_{2}} \quad$ 3.s $=v t, t=\frac{s}{v}$
3.

$$
\overline{v_{i}}=v_{1} \hat{i} ; \quad \overline{v_{f}}=v_{2} \hat{j} ; \Delta \bar{v}=\overline{v_{f}}-\overline{v_{i}}=v_{2} \hat{j}-v_{1} \hat{i}
$$

$$
|\Delta \overline{\mathrm{v}}|=\sqrt{\mathrm{v}_{1}^{2}+\mathrm{v}_{2}^{2}} ; \quad \mathrm{a}=\left|\frac{\Delta \mathrm{v}}{\Delta \mathrm{t}}\right|
$$

5. $a=\frac{v-u}{t} ; 6 . s_{n}=a\left(n-\frac{1}{2}\right) ; s=\frac{1}{2} a n^{2}$
6. $s_{n}=\frac{a}{2}(2 n-1): s=\frac{a}{2} n^{2} ; \frac{s_{n}}{s}=\frac{2 n-1}{n^{2}}$
7. $v=u+a t$;
8. $v^{2}-u^{2}=2 a s ; v=0$ both the cases

$$
u^{2} \propto s ; \quad\left(\frac{u_{1}}{u_{2}}\right)^{2}=\left(\frac{s_{1}}{s_{2}}\right)
$$

10. $v^{2}-u^{2}=2 a s$
11. $v=\sqrt{u^{2}+2 g h}$ is samefor boththebodies.
12. $\Delta \mathrm{t}=\frac{\mathrm{2u}}{\mathrm{~g}}$
13. $H_{1}=\frac{g t^{2}}{2} ; H_{2}=\frac{g(t-\tau)^{2}}{2} ; I=H_{1}-H_{2}$
14. $h=-t+\frac{1}{2} g^{2} 15 . H_{\max }=\frac{\mathrm{u}^{2}}{2 g}$ (independent of mass)
15. $S_{n}=g\left(n-\frac{1}{2}\right) ;$ Ratio $=\frac{g}{2}: \frac{3 g}{2}: \frac{5 g}{2} \ldots . .(2 n-1) \frac{g}{2}$

$$
S_{n} \propto(2 n-1)
$$

17. $\mathrm{h}=\frac{1}{2} \mathrm{gt}^{2} \quad$ 18. $\mathrm{v}=\sqrt{2 \mathrm{gh}}$
18. Since the ball returns back to its initial position, thedisplacement iszero.
19. $h=h_{1}+h_{2}, \frac{1}{2} g t^{2}=\frac{1}{2}{g t_{1}^{2}}^{2} \frac{1}{2} \mathrm{gt}_{2}^{2} ; \mathrm{t}_{\mathrm{tt}}=\mathrm{t}_{1}+\mathrm{t}_{2}$
20. $\mathrm{v}_{\mathrm{A}}+\mathrm{v}_{\mathrm{B}}=4 \mathrm{~m} / \mathrm{s} ; \mathrm{v}_{\mathrm{A}}-\mathrm{v}_{\mathrm{B}}=\frac{4}{10} \mathrm{~m} / \mathrm{s}$
21. $t=\frac{I_{1}+I_{2}}{v_{r}}=\frac{I_{1}+I_{2}}{v_{1}+v_{2}}$
22. $t=\frac{d_{r}}{v_{r}}=\frac{h}{u_{1}+u_{2}} \quad\left[\because a_{r}=0\right] ; u_{1}=0$
