For More Study Material

For Class 9 Science	$\underline{\text { Click here }}$
For Class 9 Mathematics	$\underline{\text { Click here }}$
For Class 10 Science	$\underline{\text { Click here }}$
For Class 10 Mathematics	$\underline{\text { Click here }}$
For Class 11 Physics	$\underline{\text { Click here }}$
For Class 11 Chemistry	$\underline{\text { Click here }}$
For Class 11 Biology	$\underline{\text { Click here }}$
For Class 11 mathematics	$\underline{\text { Click here }}$
For Class 12 Physics	$\underline{\text { Click here }}$
For Class 12 Chemistry	$\underline{\text { Click here }}$
For Class 12 Biology	$\underline{\text { Click here }}$
For Class 12 Mathematics	

MEASUREMENT OF TEMPERATURE

1. Temperature of gas is a measure of

1) the average translational kinetic energy of the gas molecules
2) the average potential energy of the gas molecules
3) the average distance of the gas molecules
4) the size of the molecules of the gas
2. Celsius is the unit of
1) Temperature
2) Heat
3) Specific heat
4) Latent heat
3. On the Celsius scale the absolute zero of temperature is at
1) $0^{0} \mathrm{C}$
2) $-32^{0} \mathrm{C}$
3) $100^{\circ} \mathrm{C}$
4) $-273.15^{0} \mathrm{C}$
4. The correct value of $0^{0} \mathrm{C}$ on the Kelvin scale is
1) $273.15^{0} \mathrm{C}$
2) $273.16^{\circ} \mathrm{C}$
3) $273^{0} \mathrm{C}$
4) $273.2^{0} \mathrm{C}$
5. The standard scale of temperature is
1) the mercury scale
2) the gas scale
3) the platinum resistance scale
4) liquid scale
6. Melting and Boiling point of water on Fahrenheit scale of temperature respectively
1) $212{ }^{0} \mathrm{~F}, 32^{0} \mathrm{~F}$
2) $32^{0} \mathrm{~F}, 212^{0} \mathrm{~F}$
3) $0^{0} F, 100^{0} \mathrm{~F}$
4) $32^{0} \mathrm{~F}, 132^{0} \mathrm{~F}$
7. For measurements of very high temperature say around $5000^{\circ} \mathrm{C}$ (of sun), one can use:
1) Gas thermometer
2) Platinum resistance thermometer
3) Vapour pressure thermometer
4) Pyrometer(Radiation thermometer)
8. Mercury boils at $356^{\circ} \mathrm{C}$. However, mercury thermometers are made such that they can measure temperatures upto $500^{\circ} \mathrm{C}$. This is done by
1) maintaining vacuum above the mercury column in the stem of the thermometer
2) filling Nitrogen gas at high pressure above the mercury column
3) filling Nitrogen gas at low pressure above the mercury column
4) filling oxygen gas at high pressure above the mercury column
9. For measuring temperature near absolute zero,the thermometer used is
1) thermoelectric thermometer
2) radiation thermometer
3) magnetic thermometer
4) resistance thermometer
10. Which of the following scales of temperature has only positive degrees of temperature?
1) Centigrade
2) Fahrenheit scale
3) Reaumur scale
4)Kelvin scale
11. Which of the following is the smallest rise in temperature?
1) $1^{\circ} \mathrm{F}$
2) $1^{\circ} R$
3) 1 K
4) $1^{\circ} \mathrm{C}$
12. The temperature at which two bodies appear equally hot or cold when touched by a person is
1) $0^{\circ} \mathrm{C}$
2) $37^{\circ} \mathrm{C}$
3) $25^{\circ} \mathrm{C}$
4) $4^{\circ} \mathrm{C}$
13. The range of clinical thermometer is
1) $37^{\circ} \mathrm{C}$ to $42^{\circ} \mathrm{C}$
2) $95^{\circ} \mathrm{F}$ to $110^{\circ} \mathrm{F}$
3) $90^{\circ} \mathrm{F}$ to $112^{0} \mathrm{~F}$
4) $95^{0} \mathrm{C}$ to $104^{0} \mathrm{C}$
14. Which of the following is the largest rise in temperature?
1) $1^{\circ} \mathrm{F}$
2) $1{ }^{\circ} R$
3) 1 K
4) $1^{\circ} \mathrm{C}$

THERMALEXPANSION OF SOLIDS

15. Solids expand on heating because
1) the K.E. of the atoms increases.
2) the P.E. of the atoms increases
3) total energy of the atoms increases.
4) the K.E. of the atoms decreases.
16. Expansion during heating
1) occurs only in solids.
2) decreases the density of the material
3) occurs at same rate for all liquids and gases.
4) increases the weight of the material.
17. When a metal bar is cooled, then which one of these statements is correct.
1)Length, density and mass remain same.
2) Length decreases, density increases but mass remains same
3)Length and mass decrease but density remains the same.
4)Length and density decrease but mass remains the same.
18. When a metal bar is heated, the increase in length is greater, if
1) the bar has large diameter
2) The bar is long.
3) the temperature rise small
4) Small diameter
19. A ring shaped piece of a metal is heated, If the material expands, the hole will
1) contract
2) expand
3) remain same
4) expand or contract depending on the width
20. A solid ball of metal has a spherical cavity inside it. The ball is cooled.The Volume of the cavity will
1) decrease
2) increase
3) remain same
4) have its shape changed
21. The substance which has negative coefficient of linear expansion is
1) lead
2) aluminum
3) iron
4) invar steel
22. Two spheres of same size are made of same material but one is hollow and the other is solid. They are heated to same temperature, then
1) both spheres will expand equally.
2) hollow sphere will expand more than solid one
3) solid sphere will expand more than hollow one
4) hollow sphere will expand double that of solid one
23. If temperature of two spheres of same size but made of different materials changes by ΔT then
1) both expands equally
2) sphere with greater α expands or contracts more than other.
3) sphere with greater α expands or contracts less than other.
4) both contracts equally.
24. The linear expansion of a solid depends on
1) its original mass
2) nature of the material and temperature difference.
3) the nature of the material only
4) pressures
25. The coefficient of linear expansion of a solid depends upon
1) the unit of pressure
2) the nature of the material only
3) the nature of the material and temperature
4) unit of mass
26. If α_{c} and α_{k} denote the numerical values of coefficient of linear expansions of the solid, expressed per ${ }^{0} \mathrm{C}$ and per Kelvin respectively, then.
1) $\alpha_{c}>\alpha_{k}$
2) $\alpha_{c}<\alpha_{k}$
3) $\alpha_{c}=\alpha_{k}$
4) $\alpha_{c}=2 \alpha_{k}$
27. If $\alpha_{c}{ }_{c}$ and α_{f} denote the numerical values of coefficient of linear expansion of a solid, expressed per ${ }^{0} \mathrm{C}$ and per ${ }^{0} \mathrm{~F}$ respectively, then
1) $\alpha_{c}>\alpha_{f}$
2) $\alpha_{f}>\alpha_{c}$
3) $\alpha_{f}=\alpha_{c}$
4) $\alpha_{f}+\alpha_{c}=0$
28. The coefficient of linear expansion of a metal rod is $12 \times 10^{-6} /{ }^{0} \mathrm{C}$, its value in per ${ }^{0} \mathrm{~F}$
1) $\frac{20}{3} \times 10^{-6} /{ }^{0} \mathrm{~F}$
2) $\frac{15}{4} \times 10^{-6} /^{0} \mathrm{~F}$
3) $21.6 \times 10^{-6} /{ }^{0} \mathrm{~F}$
4) $12 \times 10^{-6} /{ }^{0} \mathrm{~F}$
29. The coefficient of volume expansion is
1) equal to the coefficient of linear expansion.
2) twice the coefficient of linear expansion
3) equal to the sum of coefficients of linear and superficial expansions.
4) Twice the coefficient of areal expansion.
30. Always platinum is fused into glass, because
1) platinum is good conductor of heat
2) melting point of platinum is very high
3) they have equal specific heats
4) their coefficients of linear expansion are equal
31. Two metal strips that constitute a bimetallic strip must necessarily differ in their.
1) length
2) mass
3) coefficient of linear expansion
4) resistivity
32. Thermostat is based on the principle of
1) equal expansion of two rods of different lengths.
2) different expansion of two rods of different lengths.
3) different expansion of two rods of same length
4) equal expansion of two rods of same length.
33. A pendulum clock shows correct time at $0^{0} \mathrm{C}$. At a higher temperature the clock.
1) looses time
2) gains time
3) neither looses nor gains time 4)will not operate
34. To keep the correct time modern day watches are fitted with balance wheel made of
1) steel
2) platinum
3) invar
4) tungsten
35. A brass disc fits into a hole in an iron plate. To remove the disc.
1) the system must be cooled
2) the system must be heated
3) the plate may be heated (or) cooled
4) the disc must be heated
36. When hot water is poured on a glass plate, it breaks because of
1) unequal expansion of glass
2) equal contraction of glass
3)unequal contraction of glass 4)glass is delicate
37. When the temperature of a body increases
1) density and moment of inertia increase
2) density and moment of inertia decrease
3) density decreases and moment of inertia increases.
4) density increases and moment of inertia decreases.
38. In balance wheel of watch, the factors that make its oscillations uniform are
1) tension in string
2) moment of inertia of balance wheel
3) temperature
4) pressure
39. When a metal ring is heated
1) the inner radius decreases and outer radius increases
2) the outer radius decreases and inner radius increases
3) both inner and outer radii increases
4) both inner and outer radii decreases
40. A cube of ice is placed on a bimetallic strip at room temperature as shown in the figure. What will happen if the upper strip of iron and the lower strip is of copper?

1) Ice moves downward
2) Ice moves upward
3) Ice remains in rest
4) None of the above
41. To withstand the shapes of concave mirrors against temperature variations used in high resolution telescope, they are made of
1) quartz
2) flint glass
3) crown glass
4)combination of flint and silica
42. The holes through which the fish plates are fitted to join the rails are oval in shape because
1) bolts are in oval shape
2) to allow the movement of rails in the direction of length due to change in temperature.
3) to make the fitting easy and tight
4) only oval shape holes are possible
43. A semicircular metal ring subtends an angle of 180° at the centre of the circle. When it is heated, this angle
1) remains constant
2) increases slightly
3) decreases slightly
4) becomes 360°
44. The diameter of a metal ring is D and the coefficient of linear expansion is α. If the temperature of the ring is increased by $1^{\circ} \mathrm{C}$, the circumference and the area of the ring will increases by
1) $\pi D \alpha, 2 \pi D \alpha$
2) $2 \pi D \alpha, \pi D^{2} \alpha$
3) $\pi D \alpha, \frac{\pi D \alpha}{2}$
4) $\pi D \alpha, \frac{\pi D^{2} \alpha}{2}$
45. The moment of inertia of a uniform thin rod about its perpendicular bisector is I. If the temperature of the rod is increased by Δt, the moment of inertia about perpendicular bisector increases by (coefficient of linear
expansion of material of the rod is α).
1)Zero
2) $\mathrm{I} \alpha \Delta t$
3) $2 \mathrm{I} \alpha \Delta t$
4) 3 I $\alpha \Delta t$
46. A bimetal made of copper and iron strips welded together is straight at room temperature. It is held vertically so that the iron strip is towards the left hand and copper strip is towards right hand. The bimetal strip is then heated. The bimetal strip will
1) remain straight
2) bend towards right
3) bend towards left
4) have no change
47. If L_{1} and L_{2} are the lengths of two rods of coefficients of linear expansion α_{1} and α_{2} respectively the condition for the difference in lengths to be constant at all temperatures is
1) $L_{1} \alpha_{1}=L_{2} \alpha_{2}$
2) $L_{1} \alpha_{2}=L_{2} \alpha_{1}$
3) $L_{1} \alpha_{1}{ }^{2}=L_{2} \alpha_{2}{ }^{2}$
4) $L_{1} \alpha_{2}{ }^{2}=L_{2} \alpha_{1}{ }^{2}$
48. When a copper ball is cooled the largest percentage increase will occur in its
1) diameter
2) area
3) volume
4) density
49. The coefficients of linear expansion of P and Q are α_{1} and α_{2} respectively. If the coefficient of cubical expansion of ' Q ' is three times the coefficient of superficial expansion of P, then which of the following is true?
1) $\alpha_{2}=2 \alpha_{1}$
2) $\alpha_{1}=2 \alpha_{2}$
3) $\alpha_{2}=3 \alpha_{1}$
4) $\alpha_{1}=3 \alpha_{2}$
50. The substance which contracts on heating is
1) silica glass
2) iron
3) invar steel
4) aluminum
51. PQR is a right angled triangle made of brass rod bent as shown. If it is heated to a high temperature the angle PQR .

1) increases
2) decreases
3) remains same
4) becomes 135°
52. A brass scale gives correct length at $0^{\circ} \mathrm{C}$. If the temperature be $25^{\circ} \mathrm{C}$ and the length read by the scale is 10 cm . Then the actual length will be
1) more than 10 cm
2) less than 10 cm
3) equal to 10 cm
4) we can not say
53. The coefficient of volume expansion is
1) twice the coefficient of linear expansion.
2) twice the coefficient of real expansion.
3) thrice the coefficient of real expansion.
4) thrice the coefficient of linear expansion
54. When a metal sphere is heated maximum percentage increase occurs in its
1) density
2) surface area
3) radius
4) volume
55. A solid sphere and a hollow sphere of same material have same mass. When they are heated by $50^{\circ} \mathrm{C}$, increase in volume of solid sphere is 5 c.c. The expansion of hollow sphere is
1) $5 \mathrm{c.c}$.
2) more than 5 c.c.
3) Less than 5 c.c.
4) None

C.U.Q - KEY

1) 1	2) 1	$3) 4$	$4) 1$	$5) 2$	$6) 2$
7) 4	$8) 2$	$9) 3$	$10) 4$	$11) 1$	$12) 2$
13) 2	$14) 2$	$15) 1$	$16) 2$	$17) 2$	$18) 2$
19)2	$20) 1$	$21) 1$	$22) 1$	$23) 2$	$24) 2$
25)2	$26) 3$	$27) 1$	$28) 1$	$29) 3$	$30) 4$
$31) 3$	$32) 3$	$33) 1$	$34) 3$	$35) 1$	$36) 1$
$37) 3$	$38) 2$	$39) 3$	$40) 1$	$41) 1$	$42) 2$
$43) 1$	$44) 4$	$45) 3$	$46) 3$	$47) 1$	$48) 4$
$49) 1$	$50) 1$	$51) 3$	$52) 1$	$53) 4$	$54) 4$
55)2					

LEVEL - I (C.W)

MEASUREMENT OF TEMPERATURE

1. If the temperature of a patient is $40^{\circ} \mathrm{C}$ his temperature in the Fahrenheit scale will be
1) $72^{\circ} \mathrm{F}$
2) $96^{\circ} \mathrm{F}$
3) $100^{\circ} \mathrm{F}$
4) $104^{\circ} \mathrm{F}$
2. The freezing point on a thermometer is marked as 20° and the boiling point as 150°. A temperature of $60^{\circ} \mathrm{C}$ on this thermometer will be read as
1) 40°
2) 65°
3) 98°
4) 110°
3. A Celsius thermometer and a Fahrenheit thermometer are put in a hot bath. The reading on Fahrenheit thermometer is just 3 times the reading on Celsius thermometer. The temperature of the hot bath is
1) $26.67^{\circ} \mathrm{C}$
2) $36.67^{\circ} \mathrm{C}$
3) $46.67{ }^{\circ} \mathrm{C}$
4)56.67 ${ }^{\circ} \mathrm{C}$
4. Oxygen boils at $-183^{\circ} \mathrm{C}$. This temperature is approximately
1) $215^{\circ} \mathrm{F}$
2) $-297^{\circ} \mathrm{F}$
3) $329^{\circ} \mathrm{F}$
4) $361^{\circ} \mathrm{F}$
5. A mercury thermometer is transferred from melting ice to a hot liquid. The mercury rises to $9 / 10$ of the distance between the two fixed points. Find the temperature of the liquid in Fahrenheit scale
1) $194^{\circ} \mathrm{F}$
2) $162^{\circ} \mathrm{F}$
3) $112^{\circ} \mathrm{F}$
4) $113^{\circ} \mathrm{F}$
6. A Centigrade and a Fehrenheit thermometer are dipped in boiling water. The water temperature is lowered until the Fahrenheit thermometer registers 140°. What is the fall in temperature as registered by the Centigrade thermometer
1) 30°
2) 40°
3) 60°
4) 80°
7. Two absolute scales A and B have triple points of water defined to be 200 A and 300 B (given triple point of water is $=276.16 \mathrm{~K}$). The relation between T_{A} and T_{B} is
1) $T_{A}=T_{B}$
2) $\mathrm{T}_{\mathrm{B}}=\frac{3}{2} \mathrm{~T}_{\mathrm{A}}$
3) $\mathrm{T}_{\mathrm{B}}=\frac{2}{3} \mathrm{~T}_{\mathrm{A}}$
4) $\mathrm{T}_{\mathrm{B}}=\frac{3}{4} \mathrm{~T}_{\mathrm{A}}$
8. The temperature coefficient of resistance of wire is $12.5 \times 10^{-4} / \mathrm{C}^{0}$. At 300 K the resistance of the wire is 1 ohm . The temperature at which resistance will be 2 ohm is
1) 1154 K
2) 1100 K
3) 1400 K
4) 1127 K
9. The reading of Centigrade thermometer coincides with that of Fahrenheit thermometer in a liquid. The temperature of the liquid is
1) $-40^{\circ} \mathrm{C}$
2) $0^{\circ} \mathrm{C}$
3) $100^{\circ} \mathrm{C}$
4) $300^{\circ} \mathrm{C}$
10. The pressure of a gas filled in the bulb of a constant volume gas thermometer at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ are 28.6 cm and 36.6 cm of mercury respectively. The temperature of bulb at which pressure will be 35.0 cm of mercury will be
1) $80^{\circ} \mathrm{C}$
2) $70^{\circ} \mathrm{C}$
3) $55^{\circ} \mathrm{C}$
4) $40^{\circ} \mathrm{C}$

THERMAL EXPANSION OF SOLIDS

11. The coefficient of linear expansion of a metal is $1 \times 10^{-5} /{ }^{0} \mathrm{C}$. The percentage increase in area of a square plate of that metal when it is heated through $100^{\circ} \mathrm{C}$ is
1) 0.02%
2) 0.1%
3) 0.001%
4) 0.2%
12. The length of each steel rail is 10 m in winter. The coefficient of linear expansion of steel is $0.000012 /^{\circ} \mathrm{C}$ and the temperature increases by $15^{0} \mathrm{C}$ in summer. The gap to be left between the rails
1) 0.0018 m
2) 0.0012 m
3) 0.0022 m
4) 0.05 m
13. A clock while keeps correct time at $30^{\circ} \mathrm{C}$ has a pendulum rod made of brass. The number of seconds it gains (or) looses per second when the temperature falls to $10^{\circ} \mathrm{C}$ is [α of brass $=18 \times 10^{-6} /{ }^{0} \mathrm{C}$]
1) $18 \times 10^{-6} \mathrm{sec}$
2) $18 \times 10^{-5} \mathrm{sec}$
3) 0.0018 sec
4) 0.018 sec
14. A metal plate of area $1.2 \mathrm{~m}^{2}$ increases its area by $2.4 \times 10^{-4} \mathrm{~m}^{2}$ when it is heated from $0^{0} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. The coefficient of cubical expansion of the metal expressed in per ${ }^{\circ} \mathrm{C}$ is
1) 2×10^{-6}
2) 4×10^{-6}
3) 6×10^{-6}
4) 3×10^{-6}
15. The length of a metal rod at $0^{\circ} \mathrm{C}$ is 0.5 m . When it is heated, its length increases by 2.7 mm . The final temperature of rod is (coeff. of linear expansion of metal $=90 \times 10^{-6} /{ }^{\circ} \mathrm{C}$)
1) $20^{\circ} \mathrm{C}$
2) $30^{\circ} \mathrm{C}$
3) $40^{\circ} \mathrm{C}$
4) $60^{\circ} \mathrm{C}$
16. The density of a substance ${ }^{\circ} 0^{\circ} \mathrm{C}$ is $10 \mathrm{~g} /$ c.c. and at $100^{\circ} \mathrm{C}$ its density is $9.7 \mathrm{~g} / \mathrm{c}$.c. The coefficient of linear expansion of the substance is.
1) $10^{-4}{ }^{\circ} \mathrm{C}$
2) $3 \times 10^{-4 / 0} \mathrm{C}$
3) $6 \times 10^{-4 / 0} \mathrm{C}$
4) $9 \times 10^{-4 / 0} \mathrm{C}$
17. What force should be applied to the ends of steel rod of a cross sectional area $10 \mathrm{~cm}^{2}$ to prevent it from elongation when heated form 273 K to 303 k ? (α of steel $10^{-5}{ }^{0} \mathrm{C}^{-1}, \mathrm{Y}=2 \times$ $10^{11} \mathrm{Nm}^{-2}$)
1) $2 \times 10^{4} \mathrm{~N}$
2) $3 \times 10^{4} \mathrm{~N}$
3) $6 \times 10^{4} \mathrm{~N}$
4) $12 \times 10^{4} \mathrm{~N}$
18. The inner diameter of a brass ring at 273 K is 5 cm . To what temperature should it be heated for it to accommodate a ball 5.01 cm in diameter. $\left(\alpha=2 \times 10^{-5} /{ }^{0} \mathrm{C}\right)$
1) 273 K
2) 372 K
3) 437 K
4) 173 K
19. A metal sheet having size of $0.6 \times 0.5 \mathbf{m}^{2}$ is heated from 293 K to $520^{\circ} \mathrm{C}$. The final area of the hot sheet is $\left\{\alpha\right.$ of metal $=2 \times 10^{-5} /^{0} \mathrm{C}$]
1) $0.306 \mathrm{~m}^{2}$
2) $0.0306 \mathrm{~m}^{2}$
3) $3.06 \mathrm{~m}^{2}$
4) $1.02 \mathrm{~m}^{2}$
20. A crystal has linear coefficients $0.00004 /{ }^{\circ} \mathrm{C}$, $0.00005{ }^{\circ} \mathrm{C}, 0.00006{ }^{\circ} \mathrm{C}$. Coefficient of cubical expansion of the crystal is
1) $0.000015 /{ }^{\circ} \mathrm{C}$
2) $0.00015 /{ }^{\circ} \mathrm{C}$
3) $0.00012 /{ }^{\circ} \mathrm{C}$
4) $0.00018 /{ }^{\circ} \mathrm{C}$
21. A wire of length 60 cm is bent into a circle with a gap of 1 cm . At its ends, on heating it by $100^{\circ} \mathrm{C}$, the length of the gap increases to 1.02 cm. α of material of wire is
1) $2 \times 10^{-4 / 0} \mathrm{C}$
2) $4 \times 10^{-4 / 0} \mathrm{C}$
3) $6 \times 10^{-4 / 0} \mathrm{C}$
4) $1 \times 10^{-4 / \mathrm{C}}$

LEVEL - I (C.W) - KEY

1) 4
2) 3
3) 1
4) 2
5) 1
6) 2
7) 2
8) 3
9) 1
10) 1
11) 4
12) 1
13) 2
14) 4
15) 4
16) 1
17) 3
18) 2
19) 1
20) 2
21) 1
1. $\left(\frac{F-32}{180}=\frac{C-0}{100}\right)$ 2. $\left(\frac{C-0}{100}\right)=\frac{X-L}{U-L}$
2. $\left(\frac{F-32}{180}=\frac{C-0}{100}\right)$ and $\mathrm{F}=2 \mathrm{C}$
3. $\left(\frac{F-32}{180}=\frac{C-0}{100}\right)$
4. $\left(\frac{F-32}{180}=\frac{9}{10}\right)$
5. $\frac{F-32}{180}=\frac{C-0}{100}$
6. Size of the degree on absolute scale $\mathrm{A}=$ size of the degree on absolute Scale B

$$
\frac{(276.16) T_{A}}{200}=\frac{(276.16) T_{B}}{300}
$$

8. $\quad \alpha=\frac{R_{2}-R_{1}}{R_{1} t_{2}-R_{2} t_{1}} \quad$ 9. $\left(\frac{C-32}{180}=\frac{C-0}{100}\right)$
9. $t=\frac{P_{t}-P_{0}}{P_{100}-P_{o}} \times 100 \quad 11 . \beta=2 \alpha, \frac{\Delta A}{A} 100=\beta \Delta t 100$
10. $l_{2}-l_{1}=l_{1} \alpha\left(t_{2}-t_{1}\right)$
11. $\frac{\Delta T}{T}=\frac{1}{2} \alpha \Delta t$
12. $\beta=\frac{A_{2}-A_{1}}{A_{1}\left(t_{2}-t_{1}\right)}, \gamma=\frac{3}{2} \beta \quad$ 15. $t_{2}-t_{1}=\frac{l_{2}-l_{1}}{l_{1} \alpha}$
13. $\gamma=\frac{d_{0}-d_{t}}{d_{t} \Delta t}, \alpha=\frac{\gamma}{3}$
14. $\Delta l=\frac{F l}{A Y}$----

Increase in length, $\Delta l=l \alpha \Delta t---$ (2)
from (1) and (2); $\frac{F l}{A Y}=l \alpha \Delta t \Rightarrow F=Y A \alpha \Delta T$
18. $\Delta t=\frac{r_{2}-r_{1}}{r_{1} \alpha} \quad$ 19. $A_{2}=A_{1}(1+\beta \Delta t)$
20. $\gamma=\alpha_{x}+\alpha_{y}+\alpha_{z}$
21. $\alpha=\frac{l_{2}-l_{1}}{l_{1} \Delta t} \quad$ (gap can be taken as l_{1})

LEVEL - I (H.W)

1. What is the temperature on Fahrenheit scale corresponding to $30^{\circ} \mathrm{C}$
1) $86^{\circ} \mathrm{F}$
2) $52^{\circ} \mathrm{F}$
3) $62^{\circ} \mathrm{F}$
4) $72^{\circ} \mathrm{F}$
2. A faulty thermometer has its fixed points marked at 6° and 96°. What is the correct temperature on the Centigrade scale when this thermometer reads 87°
1) $83^{\circ} \mathrm{C}$
2) $93^{\circ} \mathrm{C}$
3) $90^{\circ} \mathrm{C}$
4) $85^{\circ} \mathrm{C}$
3. The temperature at which Celsius reading is half the Fahrenheit reading
1) $40^{\circ} \mathrm{C}$
2) $20^{\circ} \mathrm{C}$
3) $160^{\circ} \mathrm{C}$
4) $80^{\circ} \mathrm{C}$
4. The normal boiling point of liquid hydrogen is $-253^{\circ} \mathrm{C}$. What is the corresponding temperature on absolute scale
1) 22 K
2) 20 K
3) 274 K
4) -20 K
5. A faulty thermometer has $90.5^{\circ} \mathrm{C}$ and $0.5^{\circ} \mathrm{C}$ as upper and lower fixed points respectively. What is the correct temperature if this faulty thermometer reads $15.5^{\circ} \mathrm{C}$
1) $16.67^{\circ} \mathrm{C}$
2) $16^{\circ} \mathrm{C}$
3) $15^{\circ} \mathrm{C}$
4) $15.5^{\circ} \mathrm{C}$
6. The temperature of a substance increases by $27^{\circ} \mathrm{C}$. On the Kelvin scale this increase is equal to
1) 300 K
2) 2.46 K
3) 27 K
4) 7 K
7. A Fahrenheit thermometer registers 107° while a faulty Celsius thermometer registers 42°. Find the error in the later.
1) $0.6^{\circ} \mathrm{C}$
2) $0.72{ }^{\circ} \mathrm{C}$
3) $1.2^{\circ} \mathrm{C}$
4) $7.2^{\circ} \mathrm{C}$
8. A platinum wire has a resistance of 2.62Ω at $15{ }^{\circ} \mathrm{C}$ and 3.29Ω at $80{ }^{\circ} \mathrm{C}$. Find the temperature coefficient of the resistance of platinum wire.
1) $4.18 \times 10^{-3}{ }^{\circ} \mathrm{C}^{-1}$
2) $9.34 \times 10^{-3}{ }^{\circ} \mathrm{C}^{-1}$
3) $1.934 \times 10^{-3}{ }^{\circ} \mathrm{C}^{-1}$
4) $934 \times 10^{-3}{ }^{\circ} \mathrm{C}^{-1}$
9. The Fahrenheit and Kelvin scales of temperature will give the same reading at
1) -40
2) 313
3) 574.25
4) 732.75
10. The pressure of hydrogen gas in a constant volume gas thermometer is 80.0 cm at $0^{\circ} \mathrm{C}$, 110 cm at $100^{\circ} \mathrm{C}$ and 95.0 cm at unknown temperature t. Then t is equal to
1) $50^{\circ} \mathrm{C}$
2) $75^{\circ} \mathrm{C}$
3) $95^{\circ} \mathrm{C}$
4) $150^{\circ} \mathrm{C}$

THERMAL EXPANSION OF SOLIDS
11. A brass sheet is 25 cm long and 8 cm breadth at $0^{0} \mathbf{C}$. Its area at $100^{0} \mathrm{C}$ is $\left(\alpha=18 \times 10^{-6} /{ }^{0} \mathrm{C}\right)$

1) $207.2 \mathrm{~cm}^{2}$
2) $200.72 \mathrm{~cm}^{2}$
3) $272 \mathrm{~cm}^{2}$
4) $2000.72 \mathrm{~cm}^{2}$
12. A metal rod having a linear coefficient of expansion $2 \times 10^{-5} /{ }^{0} \mathrm{C}$ has a length 1 m at $25^{\circ} \mathrm{C}$, the temperature at which it is shortened by 1 mm is $(1983 \mathrm{E})$
1) $50^{\circ} \mathrm{C}$
2) $-50^{\circ} \mathrm{C}$
3) $-25^{\circ} \mathrm{C}$
4) $-12.5^{\circ} \mathrm{C}$
13. A clock with an iron pendulum keeps correct time at $15^{\circ} \mathrm{C}$. If the room temperature rises to $20^{\circ} \mathrm{C}$, the error in seconds per day will be (coefficient of linear expansion for iron is $0.000012 /{ }^{\circ} \mathrm{C}$)
1) 2.5 sec
2) 2.6 sec
3) 2.4 sec
4) 2.2 sec
14. A steel rod of length 0.5 km is used in the construction of a bridge. It has to withstand a temperature change of $40^{\circ} \mathrm{C}$. The gap that is allowed for its expansion is $\left[\alpha=10^{-6} /{ }^{\circ} \mathrm{C}\right]$
1) 0.02 cm
2) 0.02 mm
3) 2 m
4) 20 mm
15. A wire of length 100 cm increases in length by $10^{-2} \mathrm{~m}$ when it is heated through $100^{\circ} \mathrm{C}$. The coefficient of linear expansion of the material of the wire expressed in $/ \mathrm{K}$ units is
1) -1×10^{-6}
2) 1×10^{4}
3) 1×10^{-4}
4) 10^{-2}
16. The variation of density of a solid with temperature is given by the formula
1) $d_{2}=\frac{d_{1}}{1+\gamma\left(t_{2}-t_{1}\right)}$
2) $d_{2}=\frac{d_{1}}{1-\gamma\left(t_{2}-t_{1}\right)}$
3) $d_{2}=\frac{d_{1}}{1-2 \gamma\left(t_{2}-t_{1}\right)}$
4) $d_{2}=\frac{d_{1}}{1+2 \gamma\left(t_{2}-t_{1}\right)}$
17. An iron bar whose cross sectional area is $4 \mathbf{c m}^{2}$ is heated from $0^{0} \mathrm{C}$ and $100^{\circ} \mathrm{C}$. The force required to prevent the expansion of the rod is [Y of Iron $=2 \times 10^{12}$ dyne $/ \mathrm{cm}^{2}$
α of Iron = $\mathbf{1 2} \times 10^{-6} /{ }^{0} \mathrm{C}$]
1) $0.96 \times 10^{8} \mathrm{~N}$
2) $0.96 \times 10^{7} \mathrm{~N}$
3) $9.6 \times 10^{7} \mathrm{~N}$
4) $96 \times 10^{3} \mathrm{~N}$
18. A hole is drilled in a copper sheet. The diameter of the hole is 4.24 cm at $27.0^{\circ} \mathrm{C}$. What is the change in the diameter of the hole when the sheet is heated to $227^{\circ} \mathrm{C} \boldsymbol{?} \boldsymbol{\alpha}$ for copper $=1.70 \times 10^{-5} \mathrm{~K}^{-1}$
1) $1.44 \times 10^{-2} \mathrm{~cm}$
2) $14.4 \times 10^{-2} \mathrm{~cm}$
3) $144 \times 10^{-2} \mathrm{~cm}$
4) $0.144 \times 10^{-2} \mathrm{~cm}$
19. Distance between two places is 200 km . α of metal is $2.5 \times 10^{-5} /{ }^{0} \mathrm{C}$. Total space that must be left between steel rails to allow a change of temperature from $36^{\circ} \mathrm{F}$ to $117^{\circ} \mathrm{F}$ is

[^0]20. A crystal has a coefficient of linear expansion $12 \times 10^{-6} /{ }^{0} \mathrm{C}$ in one direction and $244 \times 10^{-6} /{ }^{0} \mathrm{C}$ in every direction at right angles to it . Then the coefficient of cubical expansion of crystal is

1) $450 \times 10^{-6} /{ }^{0} \mathrm{C}$
2) $500 \times 10^{-6} /{ }^{0} \mathrm{C}$
3) $244 \times 10^{-6} /{ }^{0} \mathrm{C}$
4) $36 \times 10^{-6} /{ }^{0} \mathrm{C}$
21. When a thin rod of length ' l ' is heated from $\mathbf{t}^{0}{ }_{1} \mathbf{C}$ to $\mathbf{t}^{0}{ }_{2} \mathrm{C}$ length increases by 1%. If plate of length $2 l$ and breadth ' l ' made of same material is heated form $\mathbf{t}^{0}{ }_{1} \mathrm{C}$ to $\mathbf{t}^{\mathbf{0}}{ }_{2} \mathrm{C}$, percentage increase in area is
1) 1
2) 2
3) 3
4) 4

LEVEL - I (H.W) - KEY

1)1
2) 3
3)3
4)2
5)1
6)3
7)1 8)1
9)3
10) 1
11) 2
12)3
13) $2 \quad 14) 4$
15) 3
16)1
17)4
18)1
19) 2
20)2
21) 2

LEVEL - I (H.W) - HINTS

1. $\left(\frac{F-32}{180}=\frac{C-0}{100}\right) \quad$ 2. $\frac{C-0}{100}=\frac{X-L}{U-L}$
2. $\left(\frac{F-32}{180}=\frac{C-0}{100}\right) ; \mathrm{F}=2 \mathrm{C}$
3. $\mathrm{K}=\mathrm{C}+273$
4. $\frac{C-0}{100}=\frac{X-L}{U-L}$
5. $\Delta^{0} C=\Delta^{0} K$
6. $\frac{F-32}{180}=\frac{X-L}{U-L}$
7. $\alpha=\frac{R_{2}-R_{1}}{R_{1} t_{2}-R_{2} t_{1}}$
8. $\left(\frac{F-32}{180}=\frac{K-273}{100}\right)$ But $\mathrm{F}=\mathrm{K}=x$
9. $t=\frac{P_{t}-P_{0}}{P_{100}-P_{o}} \times 100$
10. $A_{2}=A_{1}(1+\beta \Delta t), \beta=2 \alpha$
11. $t_{2}-t_{1}=\frac{l_{2}-l_{1}}{l_{1} \Delta t}$
12. loss or gain in time per day $=\frac{1}{2} \alpha \Delta t 86400$
13. $l_{2}-l_{1}=l_{1} \alpha \Delta t$
14. $\alpha=\frac{l_{2}-l_{1}}{l_{1}\left(t_{2}-t_{1}\right)}$
15. $d_{t}=\frac{d_{0}}{(1+\gamma \Delta t)}$
16. $\Delta l=\frac{F l}{A Y}$

Increase in length $\quad \Delta l=l \alpha \Delta t---$ (2)
from (1) and (2) $\frac{F l}{A Y}=l \alpha \Delta t \Rightarrow F=Y A \alpha \Delta T$
18. $L_{2}-L_{1}=L_{1} \alpha \Delta T$
19. $l_{2}-l_{1}=l_{1} \mathrm{a} \Delta t$
20. $\gamma=\alpha_{x}+\alpha_{y}+\alpha_{y}$
21. $\left(\frac{\Delta A}{A}\right) 100=\beta \times \Delta t \times 100 \quad \beta=2 \alpha$

LEVEL - II (C.W)

MEASUREMENT OFTEMPERATURE

1. The resistance of a certain platinum resistance thermometer is found to be 2.56Ω at $0^{\circ} \mathrm{C}$ and 3.56Ω at $100^{\circ} \mathrm{C}$. When the thermometer is immersed in a given liquid, its resistance is observed to be 5.06Ω. The temperature of the liquid
1) $45{ }^{\circ} \mathrm{C}$
2) $250{ }^{\circ} \mathrm{C}$
3) $225^{\circ} \mathrm{C}$
4) $120^{\circ} \mathrm{C}$
2. A constant volume gas thermometer shows pressure readings of 50 cm and 90 cm of mercury at $0^{\circ} \mathrm{C}, 100^{\circ} \mathrm{C}$ respectively, The temperature of the bath when pressure reading is 60 cm of mercury.
1) $45{ }^{\circ} \mathrm{C}$
2) $30{ }^{\circ} \mathrm{C}$
3) $25^{\circ} \mathrm{C}$
4) $20^{\circ} \mathrm{C}$
3. On a hypothetical scale A the ice point is 42° and the steam points is 182° For another scale B. The ice point is -10° and steam point in 90°. If B reads 60°. The reading of A is.
1) 160°
2) 140°
3) 120°
4) 110°
4. The upper and lower fixed points of a faulty mercury thermometer are $210^{\circ} \mathrm{F}$ and $34^{\circ} \mathrm{F}$ respectively. The correct temperature read by this thermometer is
1) $22^{\circ} \mathrm{F}$
2) $80^{\circ} \mathrm{F}$
3) $100^{\circ} \mathrm{F}$
4) $122^{\circ} \mathrm{F}$
5. A Fahrenheit thermometer registers $110^{\circ} \mathrm{F}$ while a faulty Celsius thermometer registers $44^{0} \mathrm{C}$. Find the error in the later
1) 0.37^{0}
2) 0.87^{0}
3) 0.67^{0}
4) 0.48

THERMALEXPANSION OF SOLIDS

6. When a rod is heated from $25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$, it expands by 1 mm . When a rod of same material but with 4 times the length is heated from $25^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. The increase in length is
1) 1 mm
2) 1.5 mm
3) 1.6 mm
4) 2 mm
7. An iron metal rod is to maintain an accuracy of one part per million. The coefficient of linear expansion of iron is $1 \times 10^{-5} /{ }^{0} \mathrm{C}$. The minimum variations in temperature of the rod could be
1) $\pm 1^{0} \mathrm{C}$
2) $\pm 5^{\circ} \mathrm{C}$
3) $\pm 0.1^{\circ} \mathrm{C}$
4) $\pm 0.01{ }^{\circ} \mathrm{C}$
8. Two metal rods have coefficients of linear expansion $1.1 \times 10^{-5} /{ }^{0} \mathrm{C}$ and $1.65 \times 10^{-5} /{ }^{0} \mathrm{C}$ respectively. The difference in lengths is 10 cm at all temperatures. Their initial lengths must be respectively.
1) 40 cm and 50 cm
2) 40 cm and 30 cm
3) 50 cm and 60 cm
4) 30 cm and 20 cm
9. Two rods of same length and same diameter are drawn from equal masses and same quantity of heat is supplied to the two rods. Find the ratio of expansions if specific heats of the material is $2 / 3$ and that of coefficient of linear expansion is $\mathbf{1 / 2}$
1) $4 / 3$
2) $1 / 2$
3) $3 / 4$
4) $1 / 3$
10. Two rods of different materials having coefficients of thermal expansion α_{1}, α_{2} and young's modulus Y_{1}, Y_{2} respectively are fixed between two rigid walls. The rods are heated such that they undergo the same increase in temperature. There is no bending of rods. If $\alpha_{1}: \alpha_{2}=\mathbf{2 : 3}$, thermal stress developed in the rods are equal provided $Y_{1}: Y_{2}$ is equal to
1) $2: 3$
2) $1: 1$
3) $3: 2$
4) $4: 9$
11. Two uniform metal rods one of aluminium of length l_{1} and another made of steel of length l_{2} and linear coefficients of expansion α_{a} and α_{s} respectively are connected to form a single rod of length $l_{1}+l_{2}$. When the temperature of the combined rod is raised by $t^{\circ} \mathrm{C}$, the length of each rod increases by the same amount. Then $\frac{l_{1}}{l_{1}+l_{2}}$ is
1) $\frac{\alpha_{s}}{\alpha_{a}+\alpha_{s}}$
2) $\frac{\alpha_{a}}{\alpha_{a}+\alpha_{s}}$
3) $\frac{\alpha_{a}}{\alpha_{s}}$
4) $\frac{\alpha_{S}}{\alpha_{a}}$
12. When the temperature of a body increases from tot to Δt, its moment of inertia increases from I to $I+\Delta I$. The coefficient of linear expansion of the body is α. The ratio $\Delta I / I$ is
(2012 E)
1) $\Delta t / t$
2) $2 \Delta t / t$
3) $\alpha \Delta t$
4) $2 \alpha \Delta t$
13. There is some change in length when a 33000 \mathbf{N} tensile force is applied on a steel rod of area of cross-section $10^{-3} \mathrm{~m}^{2}$. The change of temperature required to produce the same elongation of the steel rod when heated is $\left(\mathbf{Y}=3 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}, \alpha=1.1 \times 10^{-5} /{ }^{0} \mathrm{C}\right)$
1) $20^{\circ} \mathrm{C}$
2) $15^{\circ} \mathrm{C}$
3) $10^{\circ} \mathrm{C}$
4) $0^{\circ} \mathrm{C}$
14. Brass scale of a Barometer gives correct reading at $0^{\circ} \mathrm{C}$. coefficient of linear expansion of brass is $18 \times 10^{-6} /{ }^{0} \mathrm{C}$. If the barometer reads 76 cm at $20^{\circ} \mathrm{C}$, the correct reading is $\left(\gamma_{\mathrm{Hg}}=18 \times 10^{-5} /{ }^{0} \mathrm{C}\right)$
176.426 cm
2) 75.7 cm
3) 76.642 cm
4) 76.264 cm
15. A thin brass sheet at $10^{\circ} \mathrm{C}$ and a thin steel sheet at $20^{\circ} \mathrm{C}$ have the same surface area. The common temperature at which both would have the same area is (Coefficient of linear expansion for brass and steel are respectively, $19 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ are $11 \times 10^{-6} /{ }^{\circ} \mathrm{C}$)
1) $-3.75^{\circ} \mathrm{C}$
2) $-2.75^{\circ} \mathrm{C}$
3) $2.75^{\circ} \mathrm{C}$
4) $3.75^{\circ} \mathrm{C}$
16. A pendulum clock gives correct time at $20^{\circ} \mathrm{C}$ at a place where $g=10 \mathrm{~m} / \mathrm{s}^{2}$. The pendulum consists of a light steel rod connected to a heavy ball. If it is taken to a different place where $g=10.01 \mathrm{~m} / \mathrm{s}^{2}$ at what temperature the pendulum gives correct time (α of steel is $10^{-5} /^{0} \mathrm{C}$)
[2007 E]
1) $30^{\circ} \mathrm{C}$
2) $60^{\circ} \mathrm{C}$
3) $100^{\circ} \mathrm{C}$
4) $120^{\circ} \mathrm{C}$
17. Two rods of lengths L_{1} and L_{2} are welded together to make a composite rod of length $\left(L_{1}+L_{2}\right)$. If the coefficient of linear expansion of the materials of the rods are α_{1} and α_{2} respectively, the effective coefficient of linear expansion of the composite rod is
[2012 E]
1) $\frac{L_{1} \alpha_{1}-L_{2} \alpha_{2}}{L_{1}+L_{2}}$
2) $\frac{L_{1} \alpha_{1}+L_{2} \alpha_{2}}{L_{1}+L_{2}}$
3) $\sqrt{\alpha_{1} \alpha_{2}}$
4) $\frac{\alpha_{1}+\alpha_{2}}{2}$
18. A clock pendulum made of invar has a period of 0.5 sec at $20^{\circ} \mathrm{C}$. If the clock is used in a climate where the temperature averages to $30^{\circ} \mathrm{C}$, how much time does the clock loose in each oscillation. For invar $\alpha=9 \times 10^{-7}{ }^{0} C^{-1}$
1) $2.25 \times 10^{-6} \mathrm{sec}$
2) $2.5 \times 10^{-7} \mathrm{sec}$
3) $5 \times 10^{-7} \mathrm{sec}$
4) $1.125 \times 10^{-6} \mathrm{sec}$
19. A steel scale is correct at $0^{\circ} \mathrm{C}$. The length of a brass tube measured by it at $40^{\circ} \mathrm{C}$ is 4.5 m . The correct length of the tube at $0^{\circ} \mathrm{C}$ is (Coefficients of linear expansion of steel and brass are $11 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ and $19 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ respectively).
1) 4.001 m
2) 5.001 m
3) 4.999 m
4) 4.501 m
20. The ratio of lengths of two rods is $1: 2$ and the ratio of coefficient of expansions is $2: 3$. The first rod is heated through $60^{\circ} \mathrm{C}$. Find the temperature through which the second rod is to be heated so that its expansion is twice that of first is
1) $60^{\circ} \mathrm{C}$
2) $40^{\circ} \mathrm{C}$
3) $30^{\circ} \mathrm{C}$
4) $10^{\circ} \mathrm{C}$

LEVEL - II (C.W)-KEY

1) 2
2) 3
3) 2
4) 4
5) 3
6) 4
7) 3
8) 4
9) 3
10) 3
11)1
11) 4
12) 3
13) 2
14) 1
15) 4
16) 2
17) 1
18) $4 \quad 20) 2$

LEVEL - II (C.W)- HINTS

1. $t=\frac{R_{t}-R_{0}}{R_{100}-R_{0}} \times 100 \quad$ 2. $t=\left(\frac{P_{t}-P_{0}}{P_{100}-P_{0}}\right) 100$
2. $\frac{\text { Re ading }- \text { LFP }}{\text { UFP }- \text { LFP }}=$ constant
$\frac{X_{A}-L_{A}}{U_{A}-L_{A}}=\frac{X_{B}-L_{B}}{U_{B}-L_{B}}$
3. $\frac{\text { Reading }- \text { LFP }}{\mathrm{UFP}-\mathrm{LFP}}=$ constant

$$
\frac{F-32}{180}=\frac{X-L}{U-L}
$$

5. $\frac{C-0}{100}=\frac{F-32}{180}$
6. As $\alpha_{1}=\alpha_{2} \Rightarrow \frac{e_{1}}{l_{1} \Delta t_{1}}=\frac{e_{2}}{l_{2} \Delta t_{2}}$
7. $\frac{\Delta l}{l}=1 / 10^{6} \quad \Rightarrow \frac{\Delta l}{l}=\alpha \Delta t$
8. $l_{1} \alpha_{1}=l_{2} \alpha_{2}, l_{1}-l_{2}=10$
9. $Q_{1}=Q_{2} ; \quad m s_{1}(\Delta t)_{1}=m s_{2}(\Delta t)_{2}$
10. Thermal stress $Y_{1} \mathrm{a}_{1} \Delta t=Y_{2} \mathrm{a}_{2} \Delta t$
11. $l_{1} \alpha_{a} \Delta t_{1}=l_{2} \alpha_{s} \Delta t_{2}$
12. from $\mathrm{I}=\mathrm{MR}^{2}, \frac{\Delta I}{I}=2 \times \frac{\Delta R}{R}, \frac{\Delta I}{I}=2 \alpha \Delta t$
13. $\Delta t=\frac{F}{Y A \alpha}$
14. True value $=$ scale reading $[l-(\gamma-\alpha) \Delta t]$
15. $t=\frac{\beta_{1} t_{1}-\beta_{2} t_{2}}{\beta_{1}-\beta_{2}} \quad$ 16. $\frac{\Delta l}{l}=\frac{\Delta g}{g}=\alpha \Delta t$
16. $\frac{\Delta L_{1}}{\Delta t}=L_{1} \alpha_{1} ; \frac{\Delta L_{2}}{\Delta t}=L_{2} \alpha_{2}$
$\therefore \frac{\Delta L}{\Delta t}=\frac{\Delta L_{1}}{\Delta t}+\frac{\Delta L_{2}}{\Delta t} ;\left(L_{1}+L_{2}\right) \alpha=L_{1} \alpha_{1}+L_{2} \alpha_{2}$
17. $\Delta T=\frac{1}{2} \alpha \Delta t ; \quad 19 . l_{\mathrm{c}}=l_{\mathrm{m}}\left[1+\left(\alpha_{\mathrm{S}} \sim \alpha_{\mathrm{b}}\right)\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)\right]$
18. $\Delta l=\alpha l \Delta t \Rightarrow \frac{\Delta t_{1}}{\Delta t_{2}}=\frac{\alpha_{2}}{\alpha_{1}} \times \frac{l_{2}}{l_{1}}$

[^0]: 1) 2.25 km 2$) 0.225 \mathrm{~km}$
 2) 22.5 km
 3) 0.0225 km
