For More Study Material

For Class 9 Science	$\underline{\text { Click here }}$
For Class 9 Mathematics	$\underline{\text { Click here }}$
For Class 10 Science	$\underline{\text { Click here }}$
For Class 10 Mathematics	$\underline{\text { Click here }}$
For Class 11 Physics	$\underline{\text { Click here }}$
For Class 11 Chemistry	$\underline{\text { Click here }}$
For Class 11 Biology	$\underline{\text { Click here }}$
For Class 11 mathematics	$\underline{\text { Click here }}$
For Class 12 Physics	$\underline{\text { Click here }}$
For Class 12 Chemistry	$\underline{\text { Click here }}$
For Class 12 Biology	$\underline{\text { Click here }}$
For Class 12 Mathematics	

C.U.Q

CHARGE \& CONSERVATION OF CHARGE

1. Two identical metallic spheres A and B of exactly equal masses are given equal positive and negative charges respectively. Then
1) mess of $A>M$ Mass of B
2) mass of $A<$ Mass of B
3) mass of $A=$ Mass of B
4) mass of $A \geq$ Mass of B
2. Two spheres of equal mass A and B are given $+q$ and $-q$ charge respectively then
1) mass of A increases2) mass of B increases
2) mass of A remains constant
3) mass of B decreases

3 A soap bubble is given a negative charge, then its radius.

1) Decreases
2) Increases
3) Remanins unchanged
4) Nothing can be predicted as information is insufficient

COULOMB'S LAW

4. Two charges are placed at a distance apart. If a glass slab is placed between them, force between them will
1) be zero
2) increase
3) decrease
4) remains the same
5. A negatively charged particle is situated on a straight line joining two other stationary particles each having charge +q . The direction of motion of the negatively charged particle will depend on
1) themagnitude of charge
2) the position at which it is situated
3) both magnitude of charge and its position
4) themagnitude of $+q$
6. F our charges are arranged at the corners of a square $A B C D$ as shown in thefigure. Theforce on the positive charge kept at the centre ' 0 ' is
1) zero
2) along the diagonal AC
3) along the diagonal $B D_{D}^{-2 Q}$

4) perpendicular to side $A B$
7. Two identical +ve charges are at the ends of a straight line AB. Another identical +ve charge is placed at ' C ' such that $A B=B C$. A, B and C being on the same line. Now the force on ' A '
1) increases
2) decreases
3) remains same
4) we cannot say
8. Two identical pendulums A and B are suspended from the same point. B oth aregiven positive charge, with A having more charge than B. They diverge and reach equilibrium with the suspension of A and B making angles θ_{1} and θ_{2} with the vertical respectively.
1) $\theta_{1}>\theta_{2}$
2) $\theta_{1}<\theta_{2}$
3) $\theta_{1}=\theta_{2}$
4) Thetension in A is greater than that in B
9. Two metal spheres of same mass are suspended from a common point by a light insulating string. The length of each string is same. The spheres are given electric charges $+q$ on oneend and $+4 q$ on the other. W hich of the following diagram best showsthe resulting positions of spheres?
1)

2)

3)

4)

10. Two point charges $-q$ and $+2 q$ are placed at a certain distance apart. Where should a third point charge be placed so that it is in equilibrium?

1) on the line joining the two charges on the right of $+2 q$
2) ontheline joining the two charges on the left of $-q$
3) between $-q$ and $+2 q$
4) at any point on the right bisector of the line joining $-q$ and $+2 q$.

ELECTRIC FIELD

11. Figure shows the electric lines of force emerging from a charged body. If the electric field at ' A ' and ' B ' are E_{A} and E_{B} respectively and if the displacement between ' A ' and ' B ' is ' r ' then

1) $E_{A}>E_{B}$
2) $E_{A}<E_{B}$
3) $E_{A}=\frac{E_{B}}{r}$
4) $E_{A}=\frac{E_{B}}{r^{2}}$
12. Figure shows lines of force for a system of two point charges. The possible choicefor the charges is

1) $\mathrm{q}_{\mathrm{i}}=4 \mu \mathrm{C}, \mathrm{q}_{2}=-1.0 \mu \mathrm{C}$
2) $\mathrm{q}_{\mathrm{q}}=1 \mu \mathrm{C}, \mathrm{q}_{\mathrm{c}}=-4 \mu \mathrm{C}$
3) $\left.q_{1}=-2 \mu \mathrm{C}, q_{2}=+4 \mu \mathrm{C} 4\right) \mathrm{q}_{\mathrm{L}}=3 \mu \mathrm{C}, \mathrm{q}_{2}=2 \mu \mathrm{C}$
13. DrawingsI and II show two samples of electric field lines

1) The electric fields in both I and II are produced. by negative charge located somewhere on the left and positive charges located somewhere on the right
2) In both I and II the electric field is the same every where
3) In both cases the field becomes stronger on moving fromleft to right
4) Theelectric field inl isthe sameeverywhere, but in II the electric field becomes stronger on moving fromleft to right
14. An electron is projected with certain velocity into an electric field in a direction opposite to the field. Then it is
1) accelerated
2) retarded
3) neither accelerated nor retarded
4) either accelerated or retarded
15. The acceleration of a charged particle in a uniform electric field is
1) proportional to its charge only
2) inversely proportional to its mass only
3) proportional to its specific charge
4) inversely proportional to specific charge
16. An electron and proton are placed in an electric field. The forces acting on them are F_{1} and F_{2} and their accelerations are a_{1} and a_{2} respectively then
1) $\bar{F}_{1}=\bar{F}_{2}$
2) $\bar{F}_{1}+\bar{F}_{2}=0$
3) $\left|\bar{a}_{1}\right|=\left|\bar{a}_{2}\right|$
4) $\left|\overline{\mathrm{a}}_{1}\right| \geq\left|\overline{\mathrm{a}}_{2}\right|$
17. The bob of a pendulum is positively charged. A nother identical charge is placed at the point of suspension of thependulum. Thetime period of pendulum
1) increases
2) decreases
3) becomes zero
4) remains same.
18. Intensity of electric field inside a uniformly charged hollow sphere is
1) zero
2) nonzero constant
3) changewith r
4) inversely proportional to r
19. A positive charge q_{0} placed at a point P near a charged body experiences a force of repulsion of magnitude F, the electric field E of the charged body at P is
1) $\frac{F}{q_{0}}$
2) $<\frac{F}{q_{0}}$
3) $>\frac{F}{q_{0}}$
4) F
20. A cube of side b has charge q at each of its vertices. The electric field at the centre of the cube will be(K AR NATAK A CET 2000)
1) zero
2) $\frac{32 q}{b^{2}}$
3) $\frac{q}{2 b^{2}}$
4) $\frac{q}{b^{2}}$
21. An electron and proton are sent into an electric field. The ratio of force experienced by them is
1) $1: 1$
2) $1: 1840$
3) $1840: 1$
4) $1: 9.11$
22. An electron enters an electric field with its velocity in the direction of the electric lines of force. Then
1) the path of the electron will be a circle
2) the path of the electron will be a parabola
3) the velocity of the electron will decrease
4) the velocity of the electron will increase
23. A charged bead is capable of sliding freely through a string held vertically in tension. An electric field is applied parallel to the string so that the bead stays at rest of the middle of the string. If the electric field is switched off momentarily and switched on
1) the bead moves downwards and stops as soon as the field is switched on
2) the bead moved downwards when thefield is switched off and moves upwards when thefied is switched on
3) the bead moves downwards with constant acceleration till it reaches the bottom of the string
4) the bead moves downwards with constant velocity till it reaches the bottom of the string
24. An electron is moving with constant velocity along x-axis. If a uniform electric field is applied along y-axis, then its path in the $x-y$ plane will be
1) a straight line
2) a circle
3) a parabola
4) an ellipse
25. An electron of mass M_{e}, initially at rest, moves through a certain distancein a uniform electric field in time t_{1}. proton of mass M_{p} also initially at rest, takes time t_{2} to move through an equal distance in this uniform electric field. Neglecting the effect of gravity theratio t_{2} / t_{1} is nearly equal to
1) 1 2) $\sqrt{M_{p} / M_{e}}$
2) $\sqrt{M_{e} / M_{p}}$
3) 1836
26. Dimensions of ε_{0} are
1) $\left[M^{-1} L^{-3} T^{4} A^{2}\right]$
2) $\left[M^{0} L^{-3} T^{3} A^{3}\right]$
3) $\left[M^{-1} L^{-3} T^{3} A\right]$
4) $\left[M^{-1} L^{-3} T A^{2}\right]$
27. Two point charges q and $-2 q$ are placed some distance d apart. If the electric field at the location of q is E, that at the location of $-2 q$ is
(1987)
1) $-\frac{E}{2}$
2) $-2 E$
3) $\frac{E}{2}$
4) $-4 E$
28. $E=-\frac{d V}{d r}$, here negative sign signified that
1) E is oppositeto V 2) E is negative
2) E increases when V decreases
3) E is directed in the direction of decreasing V
29. An electron moves with a velocity \vec{v} in an electric field \vec{E}. If the angle between \vec{V} and \vec{E} is neither 0 nor π, then path followed by the electron is
1) straight line
2) circle
3) ellipse
4) parabola
30. A charged particle is free to move in an electric field
1) It will always move perpendicular to the line of force
2) It will always move al ong the line of forcein the direction of the fied.
3) It will al ways move along the line of force opposite to the direction of the field.
4) It will always move along the line of forcein the direction of the field or opposite to the direction of the field depending on the nature of the charge
31. Two parallel plates carry opposite charges such that the electric field in the space between them is in upward direction. An electron is shot in the space and parallel to the plates. Its deflection from the original direction will be
1) Upwards
2) Downwards
3) Circular
4) does not deflect

ELECTRIC POTENTIAL AND

POTENTIAL ENERGY

32. Potential at the point of a pointed conductor is
1) maximum
2) minimum
3) zero
4) same as at any other point
33. An equipotential line and a line of force are 1) perpendicular to each other
2) parallel to each other
3) in any direction 4) at an angle of 45°
34. When a positively charged conductor is placed near an earth connected conductor, its potential
1) always increases
2) always decreases
3) may increaseor decrease 4) remains the same
35. If a unit charge is taken from one point to another over an equipotential surface, then
1) work is done on the charge
2) work is done by the charge
3) work on the charge is constant
4) no work is done
36. Electric potential at some point in space is zero. Then at that point
1) electric intensity is necessarily zero
2) dectric intensity is necessarily non zero.
3) electric intensity may or may not be zero
4) electric intensity is necessarily infinite
37. W hen an electron approaches a proton, their electro static potential energy
1) decreases
2) increases
3) remains unchanged
4) all the above
38. An electron and a proton move through a potential difference of 200V. Then
1) electron gains more energy
2) proton gains moreenergy
3) both gain sameenergy
4) none of themgain energy
39. Two charges $+q$ and $-q$ are kept apart. Then at any point on the right bisector of linejoining the two charges.
1) the electric field strength is zero
2) the electric potential is zero
3) both electric potential and electric field strength arezero
4) both electric potential and electric field strengtharenon- zero
40. W hen ' n ' small drops are made to combine to form a big drop, then the big drop's
1) Potential increases to $n^{1 / 3}$ times original potential and the charge density decreases to $\mathrm{n}^{1 / 3}$ times original charge
2) Potential increases to $n^{2 / 3}$ times original potential and charge density increases to $\mathrm{n}^{1 / 3}$ times original charge density
3) Potential and charge density decrease to $\mathrm{n}^{1 / 3}$ times original values
4) Potential and chargedensity increases to ' n ' times original values
41. A hollow metal sphere of radius 5 cm is charged such that the potential on its surface is 10 V . The potential at the centre of the sphere is
1) 0 V
2) 10 V
3) same as at point 5 cm away from the surface
4) sameas at point 25 cm from the surface
42. The work done (in J oule) in carrying a charge of ' x ' coulomb between two points having a potential difference of ' y ' volt is
1) $\frac{x}{y}$
2) $\frac{x^{2}}{y}$
3) $\frac{y}{x}$
4) $x y$
43. Two charges q and $-q$ are kept apart. Then at any point on the perpendicular bisector of line joining the two charges.
(2008E)
1) the electric field strength is zero
2) the electric potential is zero
3) both electric potential and electric field strength arezero
4) both electric potential and electric field strengtharenon-zero
44. Electric potential at the centre of a charged hollow spherical conductor is
1) zero
2) twice as that on the surface
3) half of that on the surface
4) same as that on the surface
45. Which of the following pair is related as in work and force
1) electric potential and electric intensity
2) momentumand force
3) impulse and force
4) resistance and voltage
46. The equipotential surfaces corresponding to single positve charge are concentric spherical shells with the charge at its origin. The spacing between the surfaces for the same change in potential
1) is uniformthroughout thefiedd
2) is getting closer as $r \rightarrow \infty$
3) is getting closer as $r \rightarrow 0$
4) can be varied as one wishes to
47. Four identical charges each of charge q are placed at the corners of a square. Then at the centre of the square the resultant electric intensity E and the net electric potential V are
1) $E \neq Q, V=0$
2) $E=0, V=0$
3) $E=0, V \neq 0$
4) $E \neq 0, V \neq 0$
48. Two positive charges q and qare placed at the diagonally opposite corners of a square and two negative charges $-q$ and $-q$ are placed at the other two corners of the square. Then at the centre of the square the resultant electric intensity E and the net electric potential V are
1) $E \neq Q, V=0$
2) $E=0, V=0$
3) $\mathrm{E}=0, \mathrm{~V} \neq 0$
4) $\mathrm{E} \neq 0, \mathrm{~V} \neq 0$
49. Two copper spheres of the same radii, one hollow and the other solid, are charged to the same potential, then
1) hollow sphere holds more charge
2) solid sphere holds more charge
3) both hold equal charge
4) we can't say
50. Equipotential surfaces are shown in figure a and b. The field in

1) a is uniformonly
2) bis uniformonly
3) a and b is uniform
4)both arenonuniform
51. Due to the motion of a charge, its magnitude
1) changes
2) does not changes
3) increases (or) decreases depends on its speed
4) can not be predicted
52. Induction preceeds attraction because
1) an uncharged body can attract an uncharged body due to induction of opposite chargeon it
2) a charged body can attract an uncharged body due to induction of same chargeon it.
3) a charged body can attract an uncharged body due to induction of oppositechargeon it.
4) a charged body can attract another charged body dueto induction of same charge on it.
53. The coulomb electrostatic force is defined for
1) two spherical charges at rest
2) two spherical charges in motion
3) two point charges in motion
4) two point charges at rest
54. The Electric field is given by $\vec{E}=\frac{\vec{F}}{q_{0}}$, here the test charge ' q_{0} ' should be
a) Infinitesimally small and positive
b) Infinitesimally small and negative
1) only a
2) only ' b '
3) a (or) b
4) neither ' a ' or ' b '
55. Thep.d $\left(V_{B}-V_{C}\right)$ between two points from C to B
1) does not depend on the path
2) depends on the path
3) depends on test charge
4) independent of electric field

56. M atch List-I with List-II

List-I

a) protonand electron
b) protonand positron
c) Deutronand α - particle
d) electron and positron

List-II

e) gains same velocity in an elctric field for sametime
f) gains same $K E$ in an electric field for sametime.
g) experience same force in electric fied
h) gains same KE when accelerated
by same potential difference.

1) $a-h, b-g, c-e, d-f$
2) $a-h, b-g, c-f, d-e$
3) $a-g, b-h, c-e, d-f$
4) $a-e, b-f, c-g, d-h$
57. M atch List-I with List-II

List-I

a) Electric potential inside a charged conducting sphere
b) Electric potential charged sphere
c) Electric fied
d) Electric field charged sphere

List-II

e) inversly proportional to square of the distance $\left(r^{2}\right)$
f) directly proportional outside the conducting to distance
(r) from the centre
g) constant inside the non conducting charged sphere
h) inversly outsidea conducting proportional to distance (r)

1) $a-f, b-e, c-g, d-h$
2) $a-e, b-f, c-h, d-g$
3) $a-h, b-g, c-e, d-f$
4) $a-g, b-h, c-f, d-e$
58. M atch the following

List-I
List-II
$\begin{array}{ll}\text { a) Fluid flow } & \begin{array}{l}\text { d) Temperature } \\ \text { difference }\end{array} \\ \text { b) Heat flow } & \begin{array}{l}\text { e) Pressure } \\ \text { difference }\end{array} \\ \text { c) Charge flow } & \text { f)Potential difference }\end{array}$

1) $a-e, b-d, c-f$
2) $a-d, b-e, c-f$
3) $a-f, b-e, c-d$
4) $a-e, b-f, c-d$

59. M atch List-I with List-II

List-I List-II

a) Two like charges arebrought nearer
b) Two unlike charge of some brought nearer
c) When a third charge of same
e) theforce between themdecreases.
f) potential energy of thesystem increases nature is placed equidistance from two like charges
d) When a dielectric
h) potential energy
mediumis introduced of thesystem betweentwo charges decreases

1) $a-h, b-f, c-g, d-e$
2) $a-f, b-h, c-g, d-e$
3) $a-h, b-f, c-e, d-g$
4) $a-g, b-e, c-f, d-h$
60. M atch the following:
a) Electric fiedd
e) Constant outsidea conducting charged sphere
b) Electric potential out f) directly propor sidethe conducting charged sphere
c) Electric field inside a non-conducting charged sphere
d) Electric potential in side a charged conducting sphere
national to distance from centre g) inversely propor tional to the distance
h) inversely proportional to the square of the distance
1) $a-h, b-g, c-e, d-f$
2) $a-e, b-f, c-h, d-g$
3) $a-h, b-g, c-f, d-e$
4) $a-g, b-h, c-f, d-e$

DIPOLE

61. The angle between electric dipolemoment pand the electric field E when the dipole is in stable equilibrium
1) 0
2) $\pi / 4$
3) $\pi / 2$
4) π
62. 'Debye' is the unit of
1) electric flux
2) electric dipolemoment
3) electric potential 4) electric field intensity
63. The electric field at a point at a distance \mathbf{r} from an electric dipole is proportional to
1) $\frac{1}{r}$
2) $\frac{1}{r^{2}}$
3) $\frac{1}{r^{3}}$
4) r^{2}
64. An electric dipole placed with its axis in the direction of a uniform electric field experiences
1) aforcebut not torque
2) atorque but no force
3) a force as well as a torque
4) neither a force nor a torque
65. An electric dipole is placed in a non uniform electric field increasing along the +ve direction of X-axis. In which direction does thedipole

1) movealong + vedirection of X - axis, rotate clockwise
2) movealong - ve direction of X - axis, rotate clockwise
3) move along + ve direction of X - axis, rotate anti clockwise
4) movealong-vedirection of X - axis, rotate anti clockwise
66. An electric dipole placed in a nonuniform electric field experiences
1) aforce but no torque
2) atorque but no force
3) a force as well as a torque
4) neither a force nor a torque
67. If E_{a} be the electric field intensity due to a short dipole at a point on the axis and E_{r} be that on the perpendicular bisector at the same distance from the dipole, then
1) $E_{a}=E_{r}$
2) $E_{a}=2 E_{r}$
3) $E_{r}=2 E_{a}$
4) $E_{a}=\sqrt{2 E_{r}}$
68. The electric potential due to an extremely short dipole at a distance r from it is proportional to
1) $\frac{1}{r}$
2) $\frac{1}{r^{2}}$
3) $\frac{1}{r^{3}}$
4) $\frac{1}{r^{4}}$
69. An electric dipole when placed in a uniform electric field will have minimum potential energy, if the angle between dipole moment and electric field is
1) zero
2) $\pi / 2$
3) π
4) $3 \pi / 2$
70. The anglebetween the electric dipole moment and the electric field strength due to it, on the equatorial line is
1) 0°
2) 90°
3) 180°
4) 60°
71. A metallic shell has a point charge q kept inside its cavity. W hich one of the following diagrams correctly represents the electric lines of forces?
(2)
2)

3)

4)

ASSERTION \& REASON

In each of the following questions, a statement of A ssertion (A) is given followed by a corresponding statement of Reason (R) just below it. M ark the correct answer.

1) B oth ' A ' and ' R ' are true and ' R ' is the correct explanation of ' A '
2) B oth ' A ' and ' R ' are true and ' R ' is not the correct explanation of ' A '
3) 'A' is true and 'R' is false
4) 'A' is false and 'R' is true
72. Assertion(A): Force between two point charges at rest is not changed by the presence of third point charge between them.
Reason(R): Force depends on the magnitude of the first two charges and seperation between them
73. Assertion (A): E lectric potential at any point on the equatorial line of an electric dipole is zero
Reason (R): E lectric potential is scalar
74. A ssertion (A) : Electrons always move from a region of lower potential to a region of highe potential
Reason (R) : Electrons carry a negative charge
75. Assertion(A): A metallic shield in form of a hollow shell may be built to block an electric field.
Reason (R): In a hollow spherical shield, the electric field inside it is zero at every point.
76. Assertion (A): For practical purpose, the earth is used as a referencefor zero potential in electrical circuits.
Reason (R): The electrical potential of a sphere of radius R with charge Q uniformly

$$
\text { distributed on the surface is given by } \frac{\mathrm{Q}}{4 \pi \varepsilon_{0} \mathrm{R}}
$$

77. A ssertion(A): Coulomb force between charges is central force
Reason (R): Coulomb force depends on medium between charges
78. Assertion(A): Electric and gravitational fields areacting along sameline. W hen proton and α - particle areprojected up veritically along that line, the time of flights is less for proton. Reason (R): In the given electric field acceleration of a charged particle is directly proportional to specific charge
79. Assertion(A): W hen a proton with certain energy moves from low potential to high potential then its K E decreases.
Reason (R): The direction of electric field is opposite to the potential gradient and work done against it is negative.
80. A ssertion(A): In bringing an electron towards a proton electrostatic potential energy of the system increases.
R eason (R): Potential dueto proton is positive
81. Assertion(A): The surface of a conductor is an equipotential surface
Reason (R): C onductor allows the flow of charge
82. Assertion (A) : A charge ' q_{1}^{\prime} exerts some force on a second charge ' q_{2} '. If a third charge ' q_{3} ' is brought near, the force exerted by q_{1} on q_{2} does not change
Reason (R): The elecrtostatic force between two charges is independent of presence of third charge
83. Assertion (A) : A point charge ' q ' is rotated along a circle around another point charge Q. The work done by electric field on the rotating charge in half revolution is zero.
Reason (R) : No work is done to move a charge on an equipotential line or surface.
84. Assertion: (A): Work done by electric force is path independent.
Reason: (R): Electric force is conservative
85. Assertion (A): In bringing an electron towards a proton electrostatic potential energy of the system increases.
Reason (R): Potential due to proton is positive.
86. Assertion(A): Two particles of same charge projected with different velocity normal to electric field experience same force
Reason (R): A charged particle experiences force, independent of velocity in electric field
87. A ssertion(A): The coulomb force is the dominating forcein the universe
Reason (R): The coulomb force is stronger than the gravitational force.
88. Assertion(A): A circle is drawn with a point positive charge $(+q)$ at its centre. The work done in taking a unit positive charge once around it is zero
Reason (R): Displacement of unit positive charge is zero
89. A ssertion(A): Electric potential at any point on theequatorial line of electric dipole is zero. Reason (R): E lectric potential is scalar
90. A ssertion(A): The potential at any point due to a group of ' N ' point charges is simply arrived at by the principle of superposition Reason (R): The potential energy of a system of two charges is a scalar quantity
91. Assertion (A): The electrostatic potential energy is independent of the manner in which the cofiguration is achieved
Reason (R): Electrostatic field is conservative field

STATEMENT QUESTIONS

92. Statement-1:- For a charged particle moving from point P to point Q, the net work done by an electrostatic field on the particle is independent of the path connecting point P to point Q.
Statement-2:- The net work done by a conservative force on an ojecte moving along a closed loop is zero
1) Statement-1 is true, statement- 2 is true, Statement-2 is the correct explanation of statement-1.
2) Statement- 1 is true, statement- 2 is true,

Statement-2 is not the correct explanation of statement-1.
3) Statement- 1 is false, Statement- 2 is true
4) Statement- 1 is true, Statement- 2 is false
93. A dielectric slab of thickness disinserted in a parallel plate capacitor whose negative plate is at $x=3 d$. The slab is equidistant from the plates. The capacitor is given some charge. As ' x ' goes from 0 to $3 d$:

1) the magnitude of the electric field remains thesame
2) the direction of the electric field remains the same
3) the electric potential increases continuously
4) the electric potential dicreases at first, then increases and again dicreases
94. C hoose the wrong statement
1) Work donein moving achargeon equipotential surface is zero.
2) Electric lines of force are always normal to an equipotential surface
3) When two like charges are brought nearer, then electrostatic potential energy of the system gets decreased.
4) Electric lines of force diverge from positive charge and convergetowards negative charge.
95. O ut of the following statements
A. Three charge system can not have zero mutual potential energy
B. The mutual potential energy of a system of charges is only due to positive charges
1) A is wrong and B is correct
2) A is correct and B is wrong
3) Both A and B arecorrect
4) Both A and B are wrong
96. Statement A: Electrical potential may exist at a point where the electrical field is zero
Statement B : Electrical Field may exist at a point where the electrical potential is zero.
Statement C : The electric potential inside a charge conducting sphere is constant.
1) A, B are true
2) B, C aretrue
3) A, C are true
4) A, B, C aretrue
97. Statement A: If an electron travels along the direction of electric field it gets accelerated Statement B: If a proton travels along the direction of electric field it gets retarded
1) Both A \& B aretrue2) A is true, B is false
2) A is false, B is true 4) Both A \& B arefalse
98. A : C harge cannot exist without mass but mass can exist without charge.
B : C harge is invariant but mass is variant with velocity
C: C harge is conserved but mass alone may not be conserved.
1) A, B, C are true
2) A, B, C are not true
3) A, B are only true 4) A, B are false, C is true
99. A particle of mass m and charge q is fastened to one end of a string fixed at point 0 . The whole system lies on a frictionless horizontal plane. Initially, the mass is at rest at A. A uniform electric field in the direction shown is then switched on. Then

1) the speed of the particle when it reaches B is
$\sqrt{\frac{2 \mathrm{qE} \ell}{\mathrm{m}}}$
2) the speed of theparticle whenit reaches B is
$\sqrt{\frac{q \mathrm{E} \ell}{\mathrm{m}}}$
3) the tension in the string when particles reaches at B is $\frac{E q}{2}$.
4) the tension in the string when the particle reaches at B is $q E$.
100. A conducting sphere A of radius a, with charge Q, is placed concentrically inside a conducting shell B of radius b. B is earthed. C is the common centre of the A and B

p) The field at a distance r from C, where $a \leq r \leq b$, is $k \frac{Q}{r^{2}}$
q) The potential at a distancer from C, where $a \leq r \leq b$, is $k \frac{Q}{r}$
r) The potential difference between A and B
is $\operatorname{KQ}\left(\frac{1}{a}-\frac{1}{b}\right)$
s) The potential at a distancer from C , where $a \leq r \leq b$, is $k Q\left(\frac{1}{r}-\frac{1}{b}\right)$
C hoose the correct answer
101. p and r aretrue
102. q is true
103. p,r,s are true
104. p, q, r, s aretrue
105. A block of mass m is attached to a spring of force constant k . C harge on the block is q. A horizontal electric field E is acting in the direction as shown. Block is released with the spring in unstretched position

smooth
a) block will execute SH M
b) Time period of oscillation is $2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}}$
c) amplitude of oscillation is $\frac{\mathrm{qE}}{\mathrm{k}}$
d) Block will oscillate but not simple harmonically
C hoose the correct answer
1) a and b are true
2) d is true
3) a,b,c are true
4) a,b,c,d are true
102. A charge is moved against repulsion. Then there is
A) decreasing its kinetic energy
B) increasing its potential energy
C) increasing both the energies
D) decreasing both the energies.
1) A, B, C, D aretrue
2) A, B, C are true
3) A, B aretrue
4) A only true
103. W hich of thefollowing statements are correct?
a) The electrostatic force does not depend on medium in which the charges are placed
b) The electrostatic force between two charges does not exist in vacuum
c) The gravitational force between masses can be usually neglected in comparision with electrostatic force
d) Any excess charge given to a conductor, not always resides on the outer surfaceof the conductor.
1) both a \& c 2) only ' C '
2) bothc \& d
3) all
104. The property of the electric line of force
a) Thetangent to the line of forceat any point is parallel to the directio of ' E ' at the point
b) No two lines of force intersect each other
1) both a \& b2) only a 3) only b 4) a or b
105. Which of the following statements are correct.
a) Electric lines of force are just imaginary lines
b) Electric lines of force will be parallel to the surface of conductor
c) If the lines of force are crowded, them field is strong
d) Electric lines of force are closed loops
1) both $a \& c$
2) bothb\&d
3) only a
4) all
106. Statement(A): Negative charges always move from a higher potential to lower potential point Statement (B): E lectric potential is vector.
1) A is true but B is false
2) B is true but A is false
3) Both A and B false
4) Both A and R aretrue
107. Statement (A): A solid conducting sphere holds more charge than a hollow conducting sphere of sameradius
Statement (B) : Two spheres A and B are connected by a conducting wire. No charge will flow from A to B, when their radii are R and $2 R$ and charges on them are $2 q$ and q respectively
1) A is true, B is false
2) A is false B is true
3) Both A and B aretrue
4) Both A and B arefalse
108. A ring with a uniform charge Q and radius R, is placed in the yz plane with its centre at the origin
a) The field at the origin is zero
b) The potential at the origin is $k \frac{Q}{R}$
c) The filed at the point $(x, 0,0)$ is $k \frac{Q}{x^{2}}$
d) The field at the point $(x, 0,0)$ is $k \frac{Q}{R^{2}+x^{2}}$

C hoose the correct answer

1) a and b are true
2) c is true
3) a,b,c are true
4) a,b,c,d are true
109. A positively charged thin metal ring of radius R is fixed in the xy plane, with its centre at the origin 0 . A negatively charged particle P is released from rest at the point ($0,0, z_{0}$), where $z_{0}>0$. Then the motion of P is
a) Periodic, for all value of z_{0} satisfying $0<Z_{0}<\infty$
b) Simple harmonic, for all values of z_{0} satisfying $0<z_{0} \leq R$
c) A pproximately simple harmonic, provided $z_{0} \ll R$
d) Such that P crosses 0 and continues to move along the negative z -axis towards $\mathrm{z}=-\infty$ C hoose the correct answer
1) a and b are true
2) c is true
3) a,c,d are true
4) a,b,c,d are true
110. A circular ring carries a uniformly distributed positive charge. The electric field (E) and potential (V) varies with distance (r) from the centre of the ring along its axis as
a)

b)

C)

d)

C hoose the correct answer

1) b and c are true
2) a is true
3) a,b,c are true
4) a,b,c,d are true
111. Two concentric shells of radii R and $2 R$ have given charges q and $-2 q$ as shown in figure. In a region $r<R$

a) $E=0$
b) $\mathrm{E} \neq 0$
c) $\mathrm{V}=0$
d) $\mathrm{V} \neq 0$

C hoose the correct answer

1) a and c are true
2) c is true
3) a,d,c are true
4) a,b,c,d are true

1) 2	2) 2	3) 2	4) 3	5) 2	6) 3
7) 1	8) 3	9) 1	10) 2	11) 1	12) 1
13) 4	14) 1	15) 3	16) 2	17) 4	18) 1
19) 2	20) 1	21) 1	22) 3	23) 4	24) 3
25) 2	26) 1	27) 3	28) 4	29) 4	30) 4
31) 2	32) 4	$33) ~$	34) 2	35) 4	$36) 3$
37) 1	38) 3	39) 2	40) 2	41) 2	42) 4
43) 2	44) 4	45) 1	46) 3	47) 3	48) 2
49) 3	50) 1	51) 2	52) 3	53) 2	54) 1
55) 1	56) 1	57) 1	58) 1	59) 2	60) 3
61) 1	62) 1	63) 3	64) 4	65) 1	66) 3
67) 2	68) 2	69) 1	70) 3	71) 3	72) 1
73) 1	74) 1	75) 1	76) 2	77) 2	78) 1
79) 2	80) 4	81) 2	82) 2	83) 1	84) 1
85) 4	86) 1	87) 4	88) 2	89) 2	90) 2
91) 1	92) 1	93) 2	94) 3	95) 4	96) 4
97) 4	98) 1	99) 2	100) 3	101) 3	102) 3
103) 2	104) 105 105 106$) 3$	107) 4	$108) 1$		
109) 1	110) 1				

ELECTRIC CHARGESAND

CONSERVATION OF CHARGE

1. One million electrons are added to a glass rod. The total charge on the rod is
1) $10^{-13} \mathrm{C}$
2) $-1.6 \times 10^{-13} \mathrm{C}$
3) $+1.6 \times 10^{-12} \mathrm{C}$
4) $10^{-12} \mathrm{C}$
2. A body has a charge of 9.6×10^{-20} coulomb. It is
1) possible
2) not possible
3) may (or) may not possible
4) Datanotsufficient

COULOMB'S LAW

3. A force of 4 N is acting between two charges in air. If the space between them is completely filled with glass $\left(\varepsilon_{\mathrm{r}}=8\right)$, then the new force will be
1) 2 N
2) 5 N
3) 0.2 N
4) 0.5 N
4. There are two charges $+1 \mu \mathrm{c}$ and $+2 \mu \mathrm{C}$ kept at certain seperation . The ratio of electro static forces acting on them will bein the ratio of
1) $1: 2$
2) $2: 1$
3) $1: 1$
4) $1: 4$
5. Two identical metal spheres possess +60 C and -20C of charges. They are brought in contact and then separated by 10 cm . The force between them is
1) $36 \times 10^{13} \mathrm{~N}$
2) $36 \times 10^{4} \mathrm{~N}$
3) $36 \times 10^{12} \mathrm{~N}$
4) $3.6 \times 10^{12} \mathrm{~N}$
6. A charge q is placed at the centre of the line joining two equal charges Q. The system of threecharges will bein equilibrium if q is equal to
1) $-\frac{Q}{2}$
2) $-\frac{Q}{4}$
3) $+\frac{Q}{4}$
4) $\frac{Q}{2}$
7. Three charges $-q,+q$ and $-q$ are placed at the corners of an equilateral triangle of side ' a '. The resultant electric force on a charge $+q$ placed at the centroid 0 of the triangle is
1) $\frac{3 q^{2}}{4 \pi \varepsilon_{0} \mathrm{a}^{2}}$
2) $\frac{q^{2}}{4 \pi \varepsilon_{0} a^{2}}$
3) $\left.\frac{q^{2}}{2 \pi \varepsilon_{0} \mathrm{a}^{2}} 4\right) \frac{3 q^{2}}{2 \pi \varepsilon_{0} \mathrm{a}^{2}}$
8. A charge of $+2 \mu \mathrm{C}$ is placed at $\mathrm{x}=0$ and a charge of $-32 \mu \mathrm{C}$ at $x=60 \mathrm{~cm}$. A third chargeQ be placed on the x-axis such that it experiences no force. The distance of the point from $+2 \mu \mathrm{C}$ is(in cm)
1) -20
2) 20
3) 15
4) 10
9. Two charges of $50 \mu \mathrm{C}$ and $100 \mu \mathrm{C}$ are separated by a distance of 0.6 m . Theintensity of electric field at a point midway betwen them is
1) $50 \times 10^{6} \mathrm{~V} / \mathrm{m}$
2) $5 \times 10^{6} \mathrm{~V} / \mathrm{m}$
3) $10 \times 10^{6} \mathrm{~V} / \mathrm{m}$
4) $10 \times 10^{-6} \mathrm{~V} / \mathrm{m}$
10. Two point charges Q and $-3 Q$ are placed some distnace apart. If the electic field at the location of Q is \vec{E}, the field at the location of $-3 Q$ is
1) \vec{E}
2) $-\vec{E}$
3) $+\frac{\vec{E}}{3}$
4) $-\frac{\vec{E}}{3}$
11. A mass m carrying a charge q is suspended from a string and placed in a uniform horizontal electric field of intensity E . The angle made by thestring with the vertical in theequilibrium position is
1) $\theta=\tan ^{-1} \frac{\mathrm{mg}}{\mathrm{Eq}}$
2) $\theta=\tan ^{-1} \frac{\mathrm{~m}}{\mathrm{Eq}}$
3) $\theta=\tan ^{-1} \frac{\mathrm{Eq}}{\mathrm{m}}$
4) $\theta=\tan ^{-1} \frac{\mathrm{Eq}}{\mathrm{mg}}$
12. A proton of mass ' m ' charge ' e ' is released from rest in a uniform electric field of strength ' E '. The time taken by it to travel a distance ' d ' in the field is
1) $\sqrt{\frac{2 d e}{m E}}$
2) $\sqrt{\frac{2 \mathrm{dm}}{\mathrm{Ee}}}$
3) $\sqrt{\frac{2 \mathrm{dE}}{\mathrm{me}}}$
4) $\sqrt{\frac{2 \mathrm{Ee}}{\mathrm{dm}}}$
13. An infinite number of charges each of magnitude q are placed on x - axis at distances of $1,2,4,8, \ldots$ meter from the origin. The intensity of the electric field at origin is
1) $\frac{q}{3 \pi \varepsilon_{0}}$
2) $\frac{q}{6 \pi \varepsilon_{0}}$
3) $\frac{q}{2 \pi \varepsilon_{0}}$
4) $\frac{q}{4 \pi \varepsilon_{0}}$
14. A uniformly charged thin spherical shell of radius R carries uniform surface charge density of σ per unit area. It is made of two hemispherical shells, held together by pressing them with forceF.F is proportional to
1) $\frac{1}{\varepsilon_{0}} \sigma^{2} R^{2}$
2) $\frac{1}{\varepsilon_{0}} \sigma^{2} R$
3) $\frac{1}{\varepsilon_{0}} \frac{\sigma^{2}}{R}$
4) $\frac{1}{\varepsilon_{0}} \frac{\sigma^{2}}{R^{2}}$
ELECTRIC POTENTIAL AND

POTENTIAL ENERGY

15. The p.d. between two plates separated by a distance of 1 mm is 100 V . The force on an electron placed in between the plates is
1) $10^{5} \mathrm{~N}$
2) $1.6 \times 10^{-24} \mathrm{~N}$
3) $1.6 \times 10^{-14} \mathrm{~N}$
4) $1.6 \times 10^{-19} \mathrm{~N}$
16. An infinite number of charges each equal to ' q ' are placed along the X-axis at $x=1, x=2$, $x=4, x=8$..... The potential at the point $x=0$ due to this set of charges is
1) $\frac{Q}{4 \pi \epsilon_{0}}$
2) $\frac{2 Q}{4 \pi \epsilon_{0}}$
3) $\frac{3 Q}{4 \pi \epsilon_{0}}$
4) $\frac{\mathrm{Q}}{\pi \epsilon_{\mathrm{o}}}$
17. A, B, C are three points on a circle of radius 1 cm . These points form the corners of an equilateral triangle. A charge 2 C is placed at the centre of the circle. The work done in carrying a charge of $0.1 \mu \mathrm{C}$ from A to B is
1) Zero
2) $18 \times 10^{11} J$
3) $1.8 \times 10^{11} \mathrm{~J}$
4) $54 \times 10^{11} \mathrm{~J}$
18. C harges $+q,-4 q$ and $+2 q$ arearranged at the corners of an equilateral triangleof side 0.15 m . If $\mathbf{q}=1 \mu \mathrm{C}$, their mutual potential energy is
1) 0.4
2) 0.5 J
3) 0.6
4) 0.8 J
19. An electron of mass ' M ' kg and charge ' e ' coulomb travels from rest through a potential difference of ' V ' volt. T he final velocity of the electron is (in m / s)
1) $\frac{2 e V}{M}$
2) $\frac{2 M V}{e}$
3) $\sqrt{\frac{2 \mathrm{eV}}{\mathrm{M}}}$
4) $\sqrt{\frac{2 M V}{e}}$
20. A charge ' Q ' is placed at each corner of a cube of side ' a '. The potential at the centre of the cube is
(2008 M)
1) $\frac{8 \mathrm{Q}}{\pi \varepsilon_{0} \mathrm{a}}$
2) $\frac{4 Q}{4 \pi \varepsilon_{0} a}$
3) $\frac{4 Q}{\sqrt{3} \pi \varepsilon_{0} a}$
4) $\frac{2 Q}{\pi \varepsilon_{0} a}$
21. A uniform electric field pointing in positive x direction exists in a region let A betheorgin B bethepoint on the x-axis at $x=+1 \mathrm{~cm}$ and C be the point on the Y axis at $y=+1 \mathrm{~cm}$. Then the potentials at the points A, B and C satisfy
1) $V_{A}<V_{B}$
2) $V_{A}>V_{B}$
3) $V_{A}<V_{C}$
4) $V_{A}>V_{C}$.
22. The electric field at the origin is along the $+v e$ x-axis. A small circle is drawn with the centre at the origin cutting the axes at the points A, B, C and D having coordinates ($a, 0),(0, a)$, $(-a, 0),(0,-a)$ respectively. 0 ut of points on the periphery of the circle, the potential is minimum at
1) A
2) B
3)C
4)D

DIPOLE

23. An electric dipole is along a uniform electric field. If it is deflected by 60°, work doneby an agent is $2 \times 10^{-19} \mathrm{~J}$. Then the work doneby an agent if it is deflected by 30° further is
1) $2.5 \times 10^{-19} \mathrm{~J}$
2) $2 \times 10^{-19} \mathrm{~J}$
3) $4 \times 10^{-19} \mathrm{~J}$
4) $2 \times 10^{-16} \mathrm{~J}$
24. The dipole moment of the given system is

1) $\sqrt{3}$ ql along perpendicular bisector of q - q line
2) $2 q$ al ong perpendicular bisector of q - q line
3) $q l \sqrt{2}$ along perpendicular bisector of q - q line 4) 0

LEVEL-I (C.W)KEY

1)2
2) 2
3) 4
4) 3
5) 1
6) 2
7) 3
8) 1
9)2
10) 3
11) 4
12) 2
13) 1
14) 1
15) 3
16) 2
17) 1
18) 3
19) 3
20) 3
21) 2
22)1
23) 2
24) 1

LEVEL - I (C.W) HINTS

1. $Q= \pm n e$ nis integer \quad 2. $Q= \pm n e$ nis integer
$\begin{array}{ll}F^{\prime}=\frac{F}{K} & \text { 4. } F=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}}\end{array}$
2. $F=\frac{1}{4 \pi \varepsilon_{0}} \frac{\left(q_{1}+q_{2}\right)^{2}}{4 d^{2}}$
3. $\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{QQ}}{\mathrm{I}^{2}}+\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{qQ}}{\left(\frac{1}{2}\right)^{2}}=0$
4. $F=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}}$
5. $x=\frac{d}{\sqrt{\frac{q_{2}}{q_{1}}}-1}$
6. $\mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}_{1}}{\mathrm{X}_{1}^{2}}-\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}_{2}}{\mathrm{x}_{2}^{2}}$
7. $\overrightarrow{\mathrm{E}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q}}{\mathrm{r}^{3}} \overrightarrow{\mathrm{r}}$
8. $\mathrm{qE}=m g \tan \theta$
9. $\mathrm{s}=\frac{1}{2} \frac{\mathrm{qE}}{\mathrm{m}} \mathrm{t}^{2}$
10. $\mathrm{E}=\frac{\mathrm{q}}{4 \pi \varepsilon_{0}}\left[\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{4^{2}}+-----\right]$
11. Pressure $=\frac{\sigma^{2}}{2 \varepsilon_{0}}$ and Force $=\frac{\sigma^{2}}{2 \varepsilon_{0}} \times \pi R^{2}$
12. $F=E q=\frac{V q}{d}$
13. $\mathrm{V}=\frac{\mathrm{Q}}{4 \pi \varepsilon_{0}}\left[\frac{1}{1}+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+---\right]$
14. Equipotential surface
15. $U=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q_{1} q_{2}}{r_{1}}+\frac{q_{2} q_{3}}{r_{2}}+\frac{q_{q} q_{3}}{r_{3}}\right]$
16. $\frac{1}{2} \mathrm{mv}^{2}=\mathrm{eV} \quad$ 20. $\mathrm{V}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{d}}$
17. Alongthefiedddirection potential decreases.
18. $V=-\vec{E} \cdot d \vec{r}$
19. $\mathrm{W}_{1}=\mathrm{pE}(1-\cos \theta)$ and

$$
\mathrm{W}_{2}=\mathrm{pE}\left(\cos \theta_{1}-\cos \theta_{2}\right)
$$

24. $p_{1}=I q=p_{2}$ and $P_{R}=\sqrt{3} q \mid$

LEVEL-I (H.W)

COULOM B'S LAW

1. A charge Q is divided into two parts q_{1} and q_{2} such that they experience maximum force of repulsion when separated by certain distance. The ratio of Q, q_{1} and q_{2} is
1) $1: 1: 2$
2) $1: 2: 2$
3) $2: 2: 1$
4) $2: 1: 1$
2. Two charges each $1 \mu c$ areat $P(2 \hat{i}+3 \hat{j}+\hat{k}) m$ and $Q(\hat{i}+\hat{j}-\hat{k}) m$. Then the force between them is
1) 100 N
2) 10 N
3) 10^{4} dyne
4) 100 dyne
3. Two charges of $+200 \mu \mathrm{C}$ and $-200 \mu \mathrm{C}$ are placed at thecorners B and C of an equilateral triangle $A B C$ of side 0.1 m . The force on a charge of $5 \mu \mathrm{C}$ placed \mathbf{A} is
1) 1800 N
2) 1200
3) $600 \sqrt{3} \mathrm{~N}$
4) 900 N
4. Two equally charged pith balls 3 cm apart repel each other with a force of 4×10^{-5} newton. The charge on each ball is
1) $2 \times 10^{9} \mathrm{C}$
2) $2 \times 10^{-9} \mathrm{C}$
3) $\frac{2}{3} \times 10^{\circ} \mathrm{C}$
4) $\frac{2}{3} \times 10^{-9} \mathrm{C}$

ELECTRIC FIELD

5. An electron (mass $=9.1 \times 10^{-31} \mathrm{~kg}$) is sent into an electric field of intensity 9.1×10^{6} newton/coulomb. The acceleration produced is
1) $1.6 \times 10^{18} \mathrm{~m} / \mathrm{s}^{2}$
2) $1.6 \times 10^{6} \mathrm{~m} / \mathrm{s}^{2}$
3) $1.6 \times 10^{-18} \mathrm{~m} / \mathrm{s}^{2}$
4) $1.6 \times 10^{-6} \mathrm{~m} / \mathrm{s}^{2}$
6. Theelectric field at $(30,30) \mathrm{cm}$ dueto a charge of -8 nC at theorigin in NC^{-1} is
1) $-400(\overline{\mathrm{i}}+\overline{\mathrm{j}})$
2) $400(\bar{i}+\bar{j})$
3) $-200 \sqrt{2}(\bar{i}+\bar{j})$
4) $200 \sqrt{2}(\bar{i}+\bar{j})$
7. Two charges of $10 \mu \mathrm{C}$ and $-90 \mu \mathrm{C}$ are separated by a distance of 24 cm . Electrostatic field strength from the smaller charge is zero at a distance of
1) 12 cm
2) 24 cm
3) 36 cm
4) 48 cm
8. Two electric charges of $+10^{-9} \mathrm{C}$ and $-10^{-9} \mathrm{C}$ are placed at the corners A and B of an equilateral triangle $A B C$ side 5 cm . Theelectric intensity at C is
1) $1800 \mathrm{~N} / \mathrm{C}$
2) 3600 N/C
3) $900 \mathrm{~N} / \mathrm{C} 4) 2700 \mathrm{~N} / \mathrm{C}$
ELECTRIC POTENTIALAND
POTENTIAL ENERGY
9. If $4 \times 10^{00} \mathrm{~V}$ is required to move a charge of 0.25 coulomb between two points, the potential difference between these two points is
1) 256 volt2) $\frac{1}{256}$ volt
2) 256×10^{-19} volt
3) 250 volt
10. Two electric charges of $9 \mu \mathrm{C}$ and $-3 \mu \mathrm{C}$ are placed 0.16 m apart in air. There aretwo points A and B on the line joining thetwo charges at distances of (i) 0.04 m from $-3 \mu \mathrm{C}$ and in between the charges and (ii) 0.08 m from $3 \mu \mathrm{C}$ and out side the two charges. The potentials at A and B are
1) $0 \mathrm{~V}, 5 \mathrm{~V}$
2) $\mathrm{OV}, 0 \mathrm{~V}$
3) $5 \mathrm{~V}, 0 \mathrm{~V}$
4) $5 \mathrm{~V}, 10 \mathrm{~V}$
11. Four charges $+3 \mu \mathrm{C},-1 \mu \mathrm{C},+5 \mu \mathrm{C}$ and $-7 \mu \mathrm{C}$ arearranged on the circumference of a circle of radius 0.5 m . The potential at the centre is
1) Zero
2) $18 \times 10^{4} \mathrm{~V}$
3) $-18 \times 10^{4} \mathrm{~V}$
4) $288 \times 10^{3} \mathrm{~V}$
12. A positive point charge ' q ' is carried from a point ' B ' to a point ' A ' in the electric field of a point charge $+Q$. If the permittivity of free space is ϵ_{0}, the work done in the process is given by

$$
\begin{array}{ll}
\text { 1) } \frac{\mathrm{qQ}}{4 \pi \epsilon_{0}}\left[\frac{1}{\mathrm{a}}-\frac{1}{\mathrm{~b}}\right] & \text { 2) } \frac{\mathrm{qQ}}{4 \pi \epsilon_{0}}\left[\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}\right] \\
\text { 3) } \frac{\mathrm{qQ}}{4 \pi \epsilon_{0}}\left[\frac{1}{\mathrm{a}^{2}}-\frac{1}{\mathrm{~b}^{2}}\right] & \text { 4) } \frac{\mathrm{qQ}}{4 \pi \epsilon_{0}}\left[\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}\right]
\end{array}
$$

13. An electric cell does 5 joules of work in carrying 10 C oulomb's of charge around a closed circuit. Theemf of the cell is
1) 2 V
2) 0.5 V
3) 4 V
4) 1 V
14. Two positive charges $12 \mu \mathrm{C}$ and $10 \mu \mathrm{C}$ are initially separated by 10 cm . The work done in bringing the two charges 4 cm closer is
1) 7.2 .
2) 3.6
3) 8.4
4) 12.4
15. An insulated charged conducting sphere of radius 5 cms has a potential of 10 V at the surface. W hat is the potential at centre?
1) 10 V
2) zero
3) sameas that at 5 cms fromthe surface
4) sameas that at 25 cms fromthesurface
16. A positive charge ' Q ' is fixed at a point. A negatively charged particle of mass ' m ' and charge ' q ' is revolving in a circular path of radius ' r ' ${ }^{\text {' with ' } Q \text { ' as the centre. The work to }}$ be done to change the radius of the circular path from r_{1} to r_{2} in J oules is
1) 0
2) $\frac{\mathrm{Qq}}{4 \pi \varepsilon_{0}}\left[\frac{1}{r_{1}}-\frac{1}{r_{2}}\right]$
3) $\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Qq}}{4 \pi \varepsilon_{0}}\left[\frac{1}{r_{1}}-\frac{1}{r_{2}}\right]$
4) $\frac{\mathrm{Qq}}{4 \pi \varepsilon_{0}}\left[\frac{1}{r_{2}}-\frac{1}{r_{1}}\right]$
17. Figurebellow showsa squarearray of charged particles, with distanced between adjacenet particle. What is theelectric potential at point P at the centre of the square if the electric potential is zero at infinity?

$$
\begin{aligned}
& \text { 1) Zero 2) } \frac{-2 q}{4 \pi \in_{0} d} \\
& \text { 3) } \frac{-4 q}{4 \pi \in_{0} d} \text { 4) } \frac{q}{4 \pi \in_{0} d} \text {. }
\end{aligned}
$$

18. The radii of two charged metal spheres are 5 cm and 10 cm both having the same charge 60 mC . If they are connected by a wire

1) A chargeof 20 mC flows throughthe wirefrom larger to smaller sphere
2) A chargeof 20 mC flows throughthe wirefrom smaller to larger sphere
3) A chargeof 40 mC flowsthroughthewirefrom smaller to larger sphere
4) Nochargeflowsthroughthe wire becauseboth spheres havesame charge
19. The electric potential at a point $(x, 0,0)$ is given by $V=\left[\frac{1000}{x}+\frac{1500}{x^{2}}+\frac{500}{x^{3}}\right]$ then the electric field at $x=1 \mathrm{~m}$ is (in volt/m)
1) $-5500 \hat{i}$
2) $5500 \hat{i}$
3) $\sqrt{5500} i$
4) zero

DIPOLE

20. An electric dipole of moment p is placed in the position of stable equilibrium in uniform electric field of intensity E . It is rotated through an angle θ from theintial position. Thepotential energy of electric dipole in the position is
1) $\mathrm{pE} \cos \theta$
2) $\mathrm{pE} \sin \theta$
3) $\mathrm{pE}(1-\cos) \theta$
4) $-\mathrm{pE} \cos \theta$
21. An electric dipole of moment \vec{p} is placed normal to the lines of force of electric intensity \vec{E}, then the work done in deflecting it through an angle of 180° is
1) pE
2) +2 pE
3) -2 pE
4) zero

LEVEL-I (H.W)KEY

1) 4
2) 4
3) 4
4) 2
5) 1
6) 3
7) 1
8) 2
9) 2
10) 1
11) 1
12) 2
13) 4
14) 1 16) 2
15) 3
16) 2
19)2 20) 4
17) 4 LEVEL-I (H.W)HINTS
$\begin{array}{ll}\text { 1. } & F \alpha q_{1} q_{2}\end{array} \quad$ 2. $F=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}}$
3. $\quad F_{1}=F_{2}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} ; F_{r}=F_{1}=F_{2}$ because angle betweenthenis 120°
4. $F=\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{d^{2}} \quad$ 5. $\mathrm{a}=\frac{\mathrm{E}}{\mathrm{m}}$
5. $\overrightarrow{\mathrm{E}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q}}{\mathrm{r}^{3}} \overrightarrow{\mathrm{r}} 7 . \quad x=\frac{d}{\sqrt{\frac{q_{2}}{q_{1}}}-1} \quad$ 8. $E=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{\mathrm{a}^{2}}$
6. $\mathrm{W}=\mathrm{q} \Delta \mathrm{V}$
7. $\mathrm{V}=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{\mathrm{q}_{1}}{\mathrm{r}_{1}}+\frac{-\mathrm{q}_{2}}{\mathrm{r}_{2}}\right]$
8. $\mathrm{V}=\frac{1}{4 \pi \varepsilon_{0}} \sum \frac{\mathrm{Q}}{\mathrm{r}}$
9. $\mathrm{W}=\frac{\mathrm{q}_{1}}{4 \pi \varepsilon_{0}}\left[\frac{1}{\mathrm{r}_{1}}-\frac{1}{\mathrm{r}_{2}}\right]$
10. $\mathrm{emf}=\frac{\mathrm{W}}{\mathrm{q}}$
11. $\mathbf{W}=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0}}\left[\frac{1}{r_{1}}-\frac{1}{r_{2}}\right]$
12. $\mathrm{V}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q}}{\mathrm{R}}$
13. $W=\frac{q_{1} q_{2}}{4 \pi \varepsilon_{0}}\left[\frac{1}{r_{1}}-\frac{1}{r_{2}}\right]$
14. $\mathrm{V}=\frac{1}{4 \pi \varepsilon_{0}} \sum \frac{\mathrm{Q}}{\mathrm{r}}$
15. $\mathrm{V}=$ constant andQ $\alpha \mathrm{R}$
16. $\mathrm{E}=\frac{\frac{-\mathrm{dV}}{\mathrm{dx}} \text { 20. } \mathrm{U}=-\overline{\mathrm{p} . \overline{\mathrm{E}} \quad 21 . \mathrm{V}}}{\text { LEVEL-II (C.W) }}$

COULOMB'S LAW

1. Two charges when kept at a distance of 1 m apart in vacuum hava some forceof repulsion. If the force of repulsion between these two charges be same, when placed in an oil of dielectric constant 4, the distance of separation is
1) 0.25 m
2) 0.4 m
3) 0.5 m
4) 0.6 m
2. The excess (equal in number) number of electrons that must be placed on each of two small spheres spaced 3 cm apart with force of repulsion between the spheres to be $10^{-19} \mathrm{~N}$ is
1) 25
2) 225
3) 625
4) 1250
3. Two small conducting spheres each of mass $9 \times 10^{-4} \mathrm{~kg}$ are suspended from the same point by non conducting strings of length 100 cm . They aregiven equal and similar charges until the strings areequally inclined at 45° each to the vertical. The charge on each sphere is coulomb
1) 1.4×10^{-6}
2) 1.6×10^{-6}
3) $\left.2 \times 10^{-6} 4\right) 1.96 \times 10^{-6}$
4. Two point charges of magnitude $4 \mu \mathrm{C}$ and -9 $\mu \mathrm{C}$ are 0.5 m apart. The electric intensity is zero at a distance ' x ' m from ' A ' and ' y ' m from ' B '. ' x ' and ' y ' arerespectively
P
4 mc

- 9 mc

1) $0.5 \mathrm{~m}, 1.0 \mathrm{~m}$
$\stackrel{A}{A} \quad \begin{aligned} & 0.5 \mathrm{~m} \\ & \\ & \text { 2) } 1.0 \mathrm{~m}, ~ 1.5 \mathrm{~m} \\ & \text { 4) } 15 \mathrm{~m}\end{aligned}$
2) $2.0 \mathrm{~m}, 1.5 \mathrm{~m}$
3) $1.5 \mathrm{~m}, 2.0 \mathrm{~m}$
5. A charge $+q$ is fixed to each of three corners of a square. On theempty corner a charge Q is placed such that there is no net electrostatic forceacting on the diagonally oppositecharge. Then
1) $Q=-2 q$
2) $Q=-2 \sqrt{2} q$
3) $Q=-\sqrt{2 q}$
4) $Q=-4 q$
6. Electrical force between two point charges is 200N. If we increase 10% charge on one of the charges and decrease 10\% charge on the other, then electrical force between them for the same distance becomes
1) 198 N
2) 100 N
3) 200 N
4) 99 N
7. N fundamental charges each of charge ' q ' are to be distributed astwo point charges seperated by a fixed distance, then the maximum to minimum force bears a ratio (N is even and greater than 2)
1) $\frac{(N-1)^{2}}{4 N^{2}}$
2) $\frac{4 N^{2}}{(N-1)}$
3) $\frac{N^{2}}{4(N-1)}$
4) $\frac{2 N^{2}}{(N-1)}$
8. A particleA having a charge of $2 \times 10^{-6} \mathrm{C}$ and a mass of 100 g is placed at the bottom of a smooth inclined plane of inclination 30°. The distance of another particle of samemass and charge, be placed on the incline so that it may remain in equilibrium is
1) 27 cm
2) 16 cm
3) 30 cm
4) 45 cm
9. Two identical particles of charge q each are connected by a massless spring of force constant k. They are placed over a smooth horizontal surface.They are released when unstretched. If maximum extension of the spring is r, the value of k is : (neglect gravitational effect)
1) $k=\frac{q}{r} \sqrt{\frac{1}{\pi \varepsilon_{0} r}}$
2) $\mathrm{k}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}^{2}}{\mathrm{~L}^{2}} \times \frac{1}{\mathrm{r}}$
3) $k=\frac{2 q}{r} \sqrt{\frac{1}{\pi \varepsilon_{0} r}}$
4) $k=\frac{q}{r} \sqrt{\frac{2}{\pi \varepsilon_{0} r}}$

ELECTRIC FIELD
10. In the figure shown, the electric field intensity at $r=1 \mathrm{~m} r=6 \mathrm{~m} r=9 \mathrm{~m}$ in Vm^{-1} is
1)-5, -1.67, +5
2) $-5,0,+5$
3) $0,1.67,04)+5,1.67,-5$

11. Point charges of $3 \times 10^{-9} \mathrm{C}$ are situated at each of three corners of a square whose side is 15 cm . The magnitude and direction of electric field at the vacant corner of the square is

1) $2296 \mathrm{~V} / \mathrm{malong}$ thediagonal
2) $9622 \mathrm{~V} / \mathrm{malong}$ thediagonal
3) $22.0 \mathrm{~V} / \mathrm{malong}$ thediagonal
4) zero
12. A large flat metal surface has uniform charge density $+\sigma$. An electron of massm and charge e leaves the surface at an angle at point A with speed v, and return to it at point B. The maximum value of $A B$ is \qquad
1) $\frac{\mathrm{Vm} \epsilon_{0}}{\sigma e}$
2) $\frac{v^{2} m \epsilon_{0}}{\Theta \sigma}$
3) $\frac{v^{2} e}{\epsilon_{0} \sigma m}$
4) $\frac{v^{2} \sigma e}{\epsilon_{0} m}$
13. ' n ' charges $Q, 4 Q, 9 Q, 16 Q \ldots .$. are placed at distances of $1,2,3 \ldots$. . metre from a point ' 0 ' on the same straight line. The electric intensity at ' 0 ' is
1) $\frac{Q}{4 \pi \epsilon_{0} n^{2}}$
2) $\frac{Q}{4 \pi \epsilon_{0} n}$
3) Infinity 4) $\frac{n Q}{4 \pi \epsilon_{0}}$
14. Two point charges $q_{L}=2 \mu \mathrm{C}$ and $\mathrm{q}_{2}=1 \mu \mathrm{C}$ are placed at distances $b=1 \mathrm{~cm}$ and $\mathrm{a}=2 \mathrm{~cm}$ from the origin on the y and x axes as shown in figure. Theelectric field vector at point (a, b) will subtend an angle θ with thex - axis given by
1) $\tan \theta=1$ 2) $\tan \theta=2$
2) $\tan \theta=34) \tan \theta=4$
15. A non-conducting ring of radius 0.5 m carries of total charge of $1.11 \times 10^{-10} \mathrm{c}$ distributed nonuniformly on its circumference producing an electric field E everywhere in space. The value of the integral $\int_{\mid=\infty}^{I=0}-\overrightarrow{\mathrm{E}} . \mathrm{dl} \quad(\mathrm{I}=0$ being centre of thering) in volts is
1) +2
2) -1
3) -2
4) zero

ELECTRIC POTENTIAL AND

POTENTIAL ENERGY

16. Three charges $+q,-q$ and $-q$ are kept at the vertices of an equilaterial triangle of 10 cm side. The potential at the mid point in between $-q$, q, if $\mathbf{q}=5 \mu \mathrm{C}$ is
1) $-6.4 \times 10^{5} \mathrm{~V}$
2) $-12.8 \times 10^{4} \mathrm{~V}$
3) $-6.4 \times 10^{4} \mathrm{~V}$
4) $-12.8 \times 10^{5} \mathrm{~V}$
17. Two charges each ' Q ' are released when the distance between is ' d '. Then the velocity of each chargeof mass ' m ' each when the distance between them is ' $2 d$ ' is
1) $\left.\frac{Q}{\sqrt{8 \pi \varepsilon_{0} \mathrm{dm}}} 2\right)$
$\frac{\mathrm{Q}}{\sqrt{4 \pi \varepsilon_{0} \mathrm{dm}}}$
2) $\frac{\mathrm{Q}}{4 \sqrt{\pi \varepsilon_{0} \mathrm{dm}}} 4$
3) $\frac{\mathrm{Q}}{\sqrt{2 \pi \varepsilon_{0} \mathrm{dm}}}$
18. An oil drop carrying charge ' Q ' is held in equilibrium by a potential difference of 600 V between the horizontal plates. In order to hold another drop of twice the radiusin equilibrium a potential drop of 1600 V had to be maintained. The charge on the second drop is
1) $\frac{Q}{2}$
2) $2 Q$
3) $\frac{3 Q}{2}$
4) $3 Q$
19. A body of mass onegram and carrying a charge $10^{-8} \mathrm{C}$ passes through two points P and Q . The electrostatic potential at Q is $O V$. The velocity of the body at Q is $0.2 \mathrm{~ms}^{-1}$ and at P is $\sqrt{0.028} \mathrm{mb}^{-1}$. Thepotential at P is
1) 150 V
2) 300 V
3) 600 V
4) 900 V
20. Three charges each $20 \mu \mathrm{C}$ are placed at the corners of an equilateral triangle of side 0.4 m . The potential energy of the system is
1) $18 \times 10^{-6} \mathrm{~J}$
2) 9 J
3) $9 \times 10^{-6} \mathrm{~J}$
4) 27 J
21. An electric field is expressed as $\vec{E}=2 \hat{i}+3 \hat{j}$. The potential difference $\left(\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}\right)$ between two pointsA and B whosepositions vectors are given by $r_{A}=\hat{i}+2 \hat{j}$ and $r_{B}=2 \hat{i}+\hat{j}+3 \hat{k}$ is
1) - 1 V
2) 1 V
3) 2 V
4) 3 V
22. Figureshowsthreecircular arcs, each of radius R and total charge as indicated. The net electric pontential at the centre of the curvature is
1) $\frac{Q}{2 \pi \varepsilon_{0} R}$
2) $\frac{Q}{4 \pi \varepsilon_{0} R}$
3) $\frac{2 Q}{\pi \varepsilon_{0} R}$
4) $\frac{Q}{\pi \varepsilon_{0} R}$
23. Two identical conducting very large plates P_{1} and P_{2} having charges $+4 Q$ and $+6 Q$ are placed very closed to each other at separation d. The plate area of either face of the plate is A. The potential difference between plates P_{1} and P_{2} is
1) $V_{P_{1}}-V_{P_{2}}=\frac{Q d}{A \varepsilon_{0}}$
2) $\mathrm{V}_{\mathrm{P}_{1}}-\mathrm{V}_{\mathrm{P}_{2}}=\frac{-Q d}{\mathrm{~A} \varepsilon_{0}}$
3) $V_{P_{1}}-V_{P_{2}}=\frac{5 Q d}{A \varepsilon_{0}}$
4) $\mathrm{V}_{\mathrm{P}_{1}}-\mathrm{V}_{\mathrm{P}_{2}}=\frac{-5 \mathrm{Qd}}{\mathrm{A} \varepsilon_{0}}$

DIPOLE

24. An electric dipole consists of two opposite charges of magnitude $1 \mu \mathrm{C}$ separated by a distance of 2 cm . The dipole is placed in an electric filed $10^{-5} \mathrm{Vm}^{-1}$. The maximum torque that the field exert on the dipole is
1) $10^{-3} \mathrm{Nm}$
2) $2 \times 10^{-13} \mathrm{Nm}$
3) $3 \times 10^{-3} \mathrm{Nm}$
4) $4 \times 10^{-3} \mathrm{Nm}$
25. An electric dipoleis formed two particles fixed at theends of a light rigid rad of length I. The mass of each particle is m and charges are $-q$ and $+q$ The system is suspended by a torsionless thread in an electric field of intensity E such that the dipoleaxis is parallel to the field if it is slightly displaced, the period of angular motion is

$$
\text { 1) } \left.\left.\left.\frac{1}{2 \pi} \sqrt{\frac{2 \mathrm{qE}}{\mathrm{~m}}} 2\right) 2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{qE}}} 3\right) 2 \pi \sqrt{\frac{\mathrm{~m}}{2 \mathrm{qE}}} 4\right) \frac{1}{2 \pi} \sqrt{\frac{\mathrm{~m}}{4 \mathrm{qE}}}
$$

26. Two point charges - q and $+q$ are located at points $(0,0,-a)$ and $(0,0, a)$ respectively. The electric potential at point $(0,0, z)$ is $(z>a)$
1) $\frac{q a}{4 \pi \varepsilon_{0} z^{2}}$
2)
3) $\frac{\mathrm{q}}{4 \pi \varepsilon_{0} \mathrm{a}}$

27. Two equal charges ' q ' of opposite sign are separated by a small distance' 2 a '. Theelectric intensity ' E ' at a point on the perpendicular bisector of the line joining the two charges at a very large distance ' r ' from the line is
1) $\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{qa}}{\mathrm{r}^{2}}$
2) $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q a}{r^{3}}$
3) $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q a}{r^{2}}$
4) $\frac{1}{4 \pi \varepsilon_{0}} \frac{\text { qa }}{r^{3}}$
$\underset{\mathrm{P}}{ } \mathrm{P}$

LEVEL-II (C.W)KEY

1) 3
2) 3
3) 1
4) 2
5) 2
6) 1
7) 3
8) 1 9) 2
9) 2
10) 1
11) 2
12) 4
14)1
13) 1 16) 4
14) 1
15) 4
16) 3
17) 4
21)1
18) 1 23) 2
19) 2
20) 3 26) 3 27) 2

LEVEL - II (C.W) HINTS

1. $\mathrm{t}^{1}=\frac{\mathrm{t}}{\sqrt{\mathrm{k}}}$
2. $\mathrm{F}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}_{\mathrm{q}} \mathrm{q}_{2}}{\mathrm{r}^{2}}$ and $\mathrm{q}=\mathrm{ne}$
3. $\mathrm{F}=\mathrm{w} \tan _{\theta}$ where $F=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}}$
4. Distanceof null point $x=\frac{\mathrm{d}}{\sqrt{\frac{\mathrm{Q}_{2}}{\mathrm{Q}_{1}}} \pm 1}$
+veforlikecharges -vefor unlikecharges
5. $\frac{1}{4 \pi \epsilon_{0}} \sqrt{2} \frac{q^{2}}{a^{2}}+\frac{1}{4 \pi \epsilon_{0}} \frac{Q q}{(\sqrt{2} a)^{2}}=0$
6. $F=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} ; \quad q_{1}^{1}=\frac{110}{100} q_{1}$ and $q_{2}^{1}=\frac{90}{100} q_{2}$
7. $\frac{\mathrm{F}_{\max }}{\mathrm{F} \min }=\frac{(\mathrm{N} / 2)^{2}}{(\mathrm{~N}-1) 1} \quad$ 8. $\mathrm{mg} \sin \theta=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}^{2}}{\mathrm{r}^{2}}$
8. $F_{c}=k x \quad$ 10. $E=-\frac{d V}{d r}$
9. $\mathrm{E}=\mathrm{E}(\sqrt{2}+1 / 2) \mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{r}^{2}}$
$r=$ length of theside
10. Field near metal surface $E=\frac{\sigma}{\epsilon_{0}}$

Forceonelectron $=e E=\frac{\Theta \sigma}{\epsilon_{0}}$
Acceleration of electron $\mathrm{a}=\frac{\mathrm{e} \sigma}{\mathrm{m} \epsilon_{0}}$
It will act as projectile with max range $=\frac{u^{2}}{a}=\frac{u^{2}}{\Theta \sigma} \times m \epsilon_{0}$
13. $\mathrm{E}=\frac{1}{4 \pi \epsilon_{\mathrm{o}}} \cdot\left[\frac{\mathrm{Q}_{1}}{x_{1}^{2}}+\frac{\mathrm{Q}_{2}}{x_{2}^{2}}+\ldots .+\frac{\mathrm{Q}_{\mathrm{n}}}{x_{\mathrm{n}}^{2}}\right]$
14. $\operatorname{Tan} \theta=\frac{E_{2}}{E_{1}}$
15. $V_{o}=K \frac{q}{R}, V_{\infty}=0 ; \int_{t=\infty}^{t=0}-\vec{E} \cdot \overrightarrow{d l}=V_{o}-V_{\infty}$
16. $\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3} ; \mathrm{V}_{1}=\mathrm{V}_{2}=\frac{1}{4 \pi \varepsilon_{0}} \frac{(-\mathrm{q})}{(\mathrm{a} / 2)}$

$$
\mathrm{V}_{3}=\frac{1}{4 \pi \varepsilon_{0}} \frac{(\mathrm{q})}{\left(\frac{\sqrt{3} \mathrm{a}}{2}\right)}
$$

17. gaininK.E $=$ loss inP.E \quad 18. $\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\left(\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right)^{3} \cdot \frac{\mathrm{Q}_{2}}{\mathrm{Q}_{1}}$
18. $\frac{1}{2} m\left[v_{Q}^{2}-v_{p}^{2}\right]=q\left[V_{P}-V_{Q}\right]$
19. $U=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q_{1} q_{2}}{r_{12}}+\frac{q_{2} q_{B}}{r_{23}}+\frac{q_{B} q_{1}}{r_{13}}\right)$
20. $\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{A}}=-\left[\int_{1}^{2} 2 \mathrm{dx}+\int_{2}^{1} 3 \mathrm{dy}\right]$
21. $\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}$
22. $V_{P_{1}}-V_{P_{2}}=\frac{-Q}{\varepsilon_{0} A / d}$
23. $\tau_{\text {max }}=\mathrm{pE}=2 \mathrm{aqE}$
24. $\tau=\mathrm{PE} \sin \theta ; \tau=\mathrm{I} \alpha ; \mathrm{I} \alpha=\mathrm{PE} \sin \theta$
$\mathrm{I}=$ moment of inertia $=\frac{\mathrm{m}^{2}}{2}$
\therefore Timeperiod $=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{pE}}}$
25. Thedistanceof pointP fromdharge+qis $r_{1}=z-a$ and fromcharge-q is $r_{2}=Z+a$

Potential
at

$$
\frac{1}{4 \pi \epsilon_{0}}\left(\frac{q}{r_{1}}-\frac{q}{r_{2}}\right)=\frac{1}{4 \pi \epsilon_{0}} \frac{2 q a}{\left(z^{2}-a^{2}\right)}
$$

27. Similar to B onequitorial lineof a shortbar magnet

LEVEL - II (H.W)

COULOMB'SLAW

1. Two equally charged identical metal spheres A and B repel each other with a force F. Another identical uncharged sphere C is touched toA and then placed midway between A and B. The net force on C is in thedirection
1) F towards A
2) F towards B
3) $2 F$ towards A
4) $2 F$ towards B
2. Two unlike charges seperated by a distance of 1 m attract each other with a force of 0.108 N . If the charges are in the ratio 1:3,the weak charge is
1) $2 \mu \mathrm{C}$
2) $4 \mu \mathrm{C}$
3) $6 \mu \mathrm{C}$
4) $5 \mu \mathrm{C}$
3. Three charges each equal to $10^{-9} \mathrm{C}$ are placed at the corners of an equilateral triangle of side 1 m . The force on one of the charges is
1) $9 \times 10^{-9} \mathrm{~N}$
2) $9 \sqrt{3} \times 10^{-9} \mathrm{~N}$
3) $27 \times 10^{-9} \mathrm{~N}$
4) $18 \times 10^{-9} \mathrm{~N}$
4. Two particles each of mass ' m ' and carrying charge ' Q 'are seperated by some distance.If they are in equilibrium under mutual gravitational and electro static forces, then Q / m (in c / Kg) is of the order of
1) 10^{-5}
2) 10^{-10}
3) 10^{-15}
4) 10^{-20}
5. There point charges $+q,-q$ and $+q$ are placed at the vertices P, Q and R of an equilateral triangle as shown. If $F=\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{r^{2}}$, where ' r ' is the side of the triangle, the force on charge at ' P ' due to charges at Q and R is
1) F along positivex-direction
2) F along negativex-direction
3) $\sqrt{2} F$ alongpositivex-direction

4) $\sqrt{2} \mathrm{~F}$ along negativex-direction
6. Three point charges $+q,+q$ and $-q$ are placed at the corners of an equilateral triangle of side ' a ' A nother charge +Q is kept at the centroid. Force exerted on Q is:
1) $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q Q}{a^{2}}$
2) $\frac{1}{4 \pi \varepsilon_{0}} \frac{6 q Q}{a^{2}}$
3) $\frac{1}{4 \pi \varepsilon_{0}} \frac{8 q Q}{a^{2}}$
4) $\frac{1}{4 \pi \varepsilon_{0}} \frac{14 q Q}{a^{2}}$
7. Three charges $-q_{1},+q_{2}$ and $-q_{3}$ are placed as shown in fig. TheX-component of the force on $-q_{1}$ isproportional to
1) $\frac{q_{2}}{b^{2}}-\frac{q_{3}}{a^{2}} \cos \theta$
2) $\frac{q_{2}}{b^{2}}+\frac{q_{3}}{a^{2}} \sin \theta^{a}$
3) $\frac{q_{2}}{b^{2}}+\frac{q_{2}}{a^{2}} \cos \theta$
4) $\frac{q_{2}}{b^{2}}-\frac{q_{2}}{a^{2}} \sin \theta$

ELECTRIC FIELD

8. The breakdown electric intensity for air is $3 \times 10^{6} \mathrm{~V} / \mathrm{m}$. Themaximum chargethat can be held by a sphere of radius 1 mm is
1) 0.33 C
2) 0.33 nC
3) 3.3 C
4) $3.3 \mu \mathrm{C}$
9. There is a uniform electric field of strength $10^{3} \mathrm{~V} / \mathrm{m}$ along y -axis. A body of mass 1 g and charge $10^{-6} \mathrm{C}$ is projected into the field from origin along the positive x-axis with a velocity $10 \mathrm{~m} / \mathrm{s}$. Its speed in m / s after 10 s is (neglect gravitation)
1) 10
2) $5 \sqrt{2}$
3) $10 \sqrt{2}$
4) 20
10. The point charges $+1 C,+1 C$ and $-1 C$ are placed at the vertices A, B and C of an equilateral triangle of side 1 m . Then
(A) The force acting on the charge at A is $9 \times 10^{9} \mathrm{~N}$
(B) The electric field strength at A is $9 \times 10^{9} \mathrm{NC}^{-1}$
1) A is correct but B is wrong
2) B is correct but A is wrong
3) Both A and B arewrong
4) BothA and B arecorrect
11. A pendulum bob of mass m carrying a charge q is at rest in a uniform horizontal electric field of intensity E. The tension in the thread is
1) $\mathrm{T}=\sqrt{(\mathrm{Eq})^{2}+(\mathrm{mg})^{2}}$
2) $T=\sqrt{\left(\frac{E}{q}\right)^{2}+(m g)^{2}}$
3) $T=\sqrt{\left(\frac{E}{q}\right)^{2}+\left(\frac{m}{g}\right)^{2}}$
4) $T=m g+E q$

ELECTRIC POTENTIAL AND POTENTIAL ENERGY
12. Four charges $10^{-8} ;-2 \times 10^{-8} ;+3 \times 10^{-8}$ and 2×10^{-8} coulomb are placed at the four corners of a square of side $1 m$ the potential at the centre of the square is

1) zero
2) 360 volt
3) 180 volt
4) $360 \sqrt{2}$ volt
13. Two metal spheres of radii R_{1} and R_{2} are charged to the same potential. Theratio of the charge on the two spheres is
1) 1
2) $\frac{1}{2}$
3) $R_{1}-R_{2}$
4) $\frac{R_{1}}{R_{2}}$
14. Two concentric, thin metallic spherical shells of radii R_{1} and $R_{2}\left(R_{1}>R_{2}\right)$ bear charges Q_{1} and Q_{2} respectively. Then the potential at radius ' r ' between R_{1} and R_{2} will be $\frac{1}{4 \pi \epsilon_{0}}$ times
1) $\frac{Q_{1}+Q_{2}}{r}$
2) $\frac{Q_{1}}{R_{1}}+\frac{Q_{2}}{r}$
3) $\frac{Q_{1}}{R_{1}}+\frac{Q_{2}}{R_{2}}$
4) $\frac{Q_{1}}{R_{2}}+\frac{Q_{2}}{R_{2}}$
15. An electric charge $10^{-3} \mu \mathrm{C}$ is placed at the origin (0,0) of $X-Y$ coordinate system. Two points A and B are situated at $(\sqrt{2}, \sqrt{2})$ and $(2,0)$ respecitvely. The potential difference between the points A and B will be:
1) 9 V
2) zero
3) 2 V
4) 4.5 V
16. A charge $-2 \mu \mathrm{C}$ at the origin, $-1 \mu \mathrm{C}$ at +7 cm and $1 \mu \mathrm{C}$ at -7 cm are placed on X - axis. The mutual potential energy of the system is
1) -0.051
2) -0.045 J
3) 0.045 J
4) -0.064 J
17. Four equal charges Q are placed at the four corners of a square of side 'a' each. Work done in removing a charge $-Q$ from its centre to infinity is
1) zero
2) $\sqrt{2} Q^{2} / 4 \pi \epsilon_{0} a$
3) $\sqrt{2} Q^{2}$
4) $\mathrm{Q}^{2} / 2 \pi \epsilon_{0} \mathrm{a}$
18. The electrostatic potential V at any point (x, y, z) in space is given by $V=4 x^{2}$
1) They- and z - components of theelectrostatic fieldat any point arenotzero
2) Thex-component of electric field intensity at any point isgivenby ($-8 x \hat{i}$)
3) Thex-component of electric field intensityata point $(2,0,2)$ is $(-8 \hat{i})$
4) The y - and z - components of the fiedd are constantinmagritude

DIPOLE

19. The self potential energy of hydrogen chloride whose dipolemoment is $3.44 \times 10^{-30} \mathrm{C}-\mathrm{m}$ and separation between hydrogen and chlorine atoms is $1.01 \times 10^{-10} \mathrm{~m}$ is
1) $1.036 \times 10^{-19} \mathrm{~J}$
2) $3.2 \times 10^{5} \mathrm{~J}$
3) $4.5 \times 10^{7} \mathrm{~J}$
4) $1.65 \times 10^{6} \mathrm{~J}$

LEVEL-II (H.W)KEY

1)1 2) 1
3) 2
4) 2 5) 2
6) 2
7) 2 8) 2
9)3 10) 4 11) 1 12) 4 13) 4 14) 2 15) 2 16) 4
17) 3 18) 2 19) 1

LEVEL - II (H.W) HINTS

$\begin{array}{ll}\text { 1. } \mathrm{F}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}^{2}} & \text { 2. } \mathrm{F}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}^{2}}\end{array}$
3. $\mathrm{F}_{1}=\mathrm{F}_{2}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}^{2}}{\mathrm{r}^{2}} ; \quad \mathrm{F}_{\mathrm{R}}=\sqrt{3} \cdot \frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}^{2}}{\mathrm{r}^{2}}$
4.
$F_{e}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{r^{2}}$ and $F_{g}=\frac{G m^{2}}{r^{2}}$
5. $F_{1}=F_{2}$ and anglebetweenthemis 120°
6. $F=\left(\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}}\right) 2$ where $r=\frac{a}{\sqrt{3}}$
8. $E=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{Q}{d^{2}}$
9. $\mathrm{v}=\mathrm{u}+$ at where $\mathrm{a}=\frac{\mathrm{Eq}}{\mathrm{m}}$
10. $\mathrm{F}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{\mathrm{q}_{1} \mathbf{Q}_{2}}{\mathrm{r}^{2}} ; \mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{\mathrm{q}}{\mathrm{r}^{2}}$
$F=\overline{F_{1}}+\overline{F_{2}} ; E=\overline{E_{1}}+\overline{E_{2}}$
12. $\mathrm{V}=\frac{1}{4 \pi \varepsilon_{0}} \sum \frac{\mathrm{Q}}{\mathrm{r}} \quad$ 13. $\mathrm{V}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q}}{\mathrm{R}}$
14. Potential is constant within the sphere and is
additive additive
15. $\mathrm{V}=\frac{\mathrm{q}}{4 \pi \varepsilon_{0}}\left(\frac{1}{\mathrm{r}_{1}}-\frac{1}{\mathrm{r}_{2}}\right) \quad$ 16. $\mathrm{PE}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{\mathrm{q}_{1} \mathrm{q}_{2}}{\mathrm{r}}$
17. Workdone=Electrostatic potential energy at thecentre of the square
18. $E=\frac{-d V}{d x}$
19. $p=2 q a \Rightarrow q=\frac{p}{2 a}=3.41 \times 10^{-20}$
$\therefore P E=\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{2 a}=1.036 \times 10^{-19} \mathrm{~J}$

