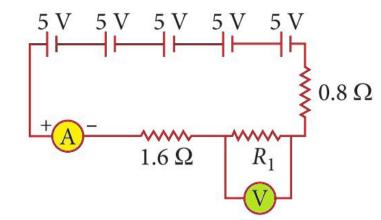

CASE STUDY QUESTION 19

Read the following and answer any four questions from (i) to (v)


Five cells each of emf 5 V are connected in series. The combination in series is joined to an ammeter of negligible resistance, a 1.6 W resistor, a 0.8 W resistor and an unknown resistor R_1 as shown in figure. The current in the circuit is 10 A. Assume the voltmeter to be ideal.

- (i) Find the value of R_1 .
- (a) 2Ω
- (b) 0.1Ω
- (c) 0.5Ω (d) 5Ω

Total emf =
$$5 \text{ V} + 5 \text{ V} + 5 \text{ V} + 5 \text{ V} + 5 \text{ V} = 25 \text{ V}$$

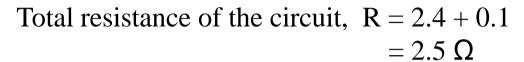
Total resistance of the circuit, $R = 1.6 \Omega + 0.8 \Omega + R_1$ $= (2.4 + R_1) \Omega$

Current in the circuit,
$$I = \frac{\text{Total emf}}{\text{Total resistance}}$$
 or $10 = \frac{25}{2.4 + R_1}$

or
$$10 = \frac{25}{2.4 + R_1}$$

or
$$24 + 10R_1 = 25$$
 or $R_1 = 0.1 \Omega$

- (ii) The value of current across resistor R_1 is
- (a) 3 A


(b) 0.5 A

- (c) 10 A
- (d) 2.5 A

As current flowing in the circuit is 10 A, so current through R_1 will also be 10 A.

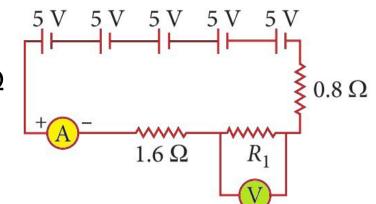
- (iii) Total resistance of the circuit is
- (a) 4Ω
- (b) 2Ω

- (c) 0.5Ω
- (d) 2.5Ω

- (iv) Find the value of potential difference across R_1 .
- (a) 1 V

(b) 2 V

(c) 3 V


(d) 4 V

Potential difference across
$$R_1$$
, $V = I R$
= 10×0.1
= $1 V$

- (v) If the voltmeter is not ideal, then current in the circuit will
- (a) increase
- (b) decrease

- (c) remain same
- (d) can't say.

If voltmeter is not ideal, then total resistance in the circuit decreases. Hence, current through the circuit increases.

