CASE STUDY QUESTION 31

Read the following and answer any four questions from (i) to (v) $\left(v \right)$

A student is making his Physics project. He purchased four cells, an ammeter and three resistors for his project. In his project, Four cells each of emf 2 V are connected in series. The combination in series is joined to an ammeter of negligible resistance, a 1.6 Ω resistor, a 0.4 Ω resistor and unknown resistor R₁ as shown in figure. The current in the circuit is 2 A.

(i) What is the value of R₁? (a) 1 Ω (b) 2 Ω (c) 4 Ω (d) 6 Ω Total emf = 2 V + 2 V + 2 V + 2 V = 8 V Total resistance of the circuit = 0.4 Ω + 1.6 Ω + R₁ = (2 + R₁) Ω Current in the circuit, $I = \frac{\text{Total emf}}{\text{Total resistance}}$ \therefore $2 = \frac{8}{2 + R_1}$ or $4 + 2R_1 = 8$ or $R_1 = 2 \Omega$

(ii) Find the value of potential difference across R_1 . (a) 4 V (b) 2 V (c) 8 V (d) 12 V The potential difference across R_1 is = (2 A)(2 Ω)

= 4 V

(iii) Calculate the total resistance of the circuit. (a) 3.75Ω (b) 3.125Ω (c) 3.5Ω (d) 4Ω Total resistance of the circuit = $0.4 \Omega + 1.6 \Omega + 2.0 \Omega$ = 4Ω .

(iv) Find the value of current across resistor R_1 . (a) 1.33 A (b) 0.25 A (c) 2 A (d) 3 A

As current flowing in the circuit is 2A, so current across R_1 is also 2A.

(v) If one of the cell is removed, the current through 1.6 Ω will be (a) 2 A (b) 1.5 A (c) 6 A (d) 025 A

If one of cell is removed, total emf. = 2 + 2 + 2 = 6 V

So, current in the circuit, $I = \frac{6}{4} = 1.5 \text{ A}$

:. Current through 1.6 Ω will also be 1.5 A.

