CASE STUDY QUESTION 32

Read the following and answer any four questions from (i) to (v) $% \left({{\mathbf{x}} \right)_{i \in {\mathbb{N}}} } \right)$

In his periodic table, Mendeleev arranged all the then known 63 elements in the order of increasing atomic masses in horizontal rows but in such a way that elements having similar properties came directly under one another in the same vertical column. In the classification of the then known elements, Mendeleev was guided mainly by two factors. In order to make sure that the elements having similar properties fell in the same vertical column, Mendeleev left some gaps in his periodic table. Though the leaving of gaps in the periodic table was considered to be a big drawback of his classification of elements at that time but Mendeleev stuck to his decision.

	H 1.01									
Ι	Li 6.94	Be 9.01	B 10.8	C 12.0	N 14.0	O 16.0	F 19.0			
	Na 23.0	Mg 24.3	AI 27.0	Si 28.1	P 31.0	S 32.1	CI 35.5			
	K 39.1	Ca 40.1		Ti 47.9	V 50.9	Cr 52.0	Mn 54.9	Fe 55.9	Co 58.9	Ni 58.7
	Cu 63.5	Zn 65.4			As 74.9	Se 79.0	Br 79.9			
- 12										
	Rb 85.5	Sr 87.6	Y 88.9	Zr 91.2	Nb 92.9	Mo 95.9		Ru 101	Rh 103	Pd 106
	Rb 85.5 Ag 108	Sr 87.6 Cd 112	Y 88.9 In 115	Zr 91.2 Sn 119	Nb 92.9 Sb 122	Mo 95.9 Te 128	I 127	Ru 101	Rh 103	Pd 106
	Rb 85.5 Ag 108 Ce 133	Sr 87.6 Cd 112 Ba 137	Y 88.9 115 La 139	Zr 91.2 Sn 119	Nb 92.9 Sb 122 Ta 181	Mo 95.9 Te 128 W 184	I 127	Ru 101 Os 194	Rh 103 Ir 192	Pd 106 Pt 195
	Rb 85.5 Ag 108 Ce 133 Au 197	Sr 87.6 Cd 112 Ba 137 Hg 201	Y 88.9 115 La 139 Ti 204	Zr 91.2 Sn 119 Pb 207	Nb 92.9 Sb 122 Ta 181 Bi 209	Mo 95.9 Te 128 W 184	I 127	Ru 101 Os 194	Rh 103 Ir 192	Pd 106 Pt 195

(i) What are the horiz	ontal rows of Mendeleev's
periodic table known	as?
(a) periods	(b) groups
(c) metals	(d) non-metals

Ans: (a) periods

H 1.01									
Li 6.94	Be 9.01	B 10.8	C 12.0	N 14.0	O 16.0	F 19.0			
Na 23.0	Mg 24.3	AI 27.0	Si 28.1	P 31.0	S 32.1	CI 35.5			
K 39.1	Ca 40.1		Ti 47.9	V 50.9	Cr 52.0	Mn 54.9	Fe 55.9	Co 58.9	Ni 58.7
Cu 63.5	Zn 65.4			As 74.9	Se 79.0	Br 79.9			
Rb 85.5	Sr 87.6	Y 88.9	Zr 91.2	Nb 92.9	Mo 95.9		Ru 101	Rh 103	Pd 106
Ag 108	Cd 112	In 115	Sn 119	Sb 122	Te 128	I 127			
Ce 133	Ba 137	La 139		Ta 181	W 184		Os 194	Ir 192	Pt 195
Au 197	Hg	Ti	Pb 207	Bi 209					
	201	204							

(ii) How many horizontal rows of elements were there in Mendeleev's original periodic table ?

(a) 6 (b) 7 (c) 8 (d) 9 Ans: (b) 7

(iii) How many vertical rows were there in Mendeleev's original periodic table ?
(a) 6 (b) 7 (c) 8 (d) 9
Ans: (c) 8

(iv) The three elements having chemical symbols of Si, B and Ge are :(a) all metals (b) all non-metals(c) all metalloids (d) Si is metalloid, B is metal and Ge is non-metal

Ans: (c) all metalloids

(v) According to Mendeleev's periodic law, the elements were arranged in the periodic table in the order of :

(a) decreasing atomic numbers

(c) decreasing atomic masses

(b) increasing atomic numbers

(d) increasing atomic masses

Ans: (d) increasing atomic masses