CASE STUDY QUESTION 45

Read the following and answer any four questions from (i) to (v)
Mirror formula is a relation between object distance (u), image distance (v) and focal length (f) of a spherical mirror. It can be written as $1 / u+1 / v=1 / f=2 / R$ where R is the radius of curvature of the mirror.
This formula is valid in all situations for all spherical mirrors for all positions of the object. Consider the case, in which a mirror forms a real image of height 4 cm
 of an object of height 1 cm placed 20 cm away from the mirror.
(i) The distance from the object to its image is
(a) 20 cm (b) 80 cm (c) 60 cm (d) 70 cm

Here $h_{1}=1 \mathrm{~cm}, h_{2}=-4 \mathrm{~cm}, u=-20 \mathrm{~cm}$

Consider the case, in which a mirror forms a real image of height 4 cm of an object of height 1 cm placed 20 cm away from the mirror.

We have, $m=\frac{h_{2}}{h_{1}}=-\frac{v}{u} \quad$ i.e., $\frac{-4}{1}=\frac{-v}{-20}$

$$
\text { or } \quad v=-80 \mathrm{~cm}
$$

So, $|v-u|=|(-80)-(-20)|=60 \mathrm{~cm}$
(ii) The focal length of mirror is
(a) -16 cm (b) 12 cm (c) -15 cm (d) 10 cm

Here, we have $\frac{1}{f}=\frac{1}{u}+\frac{1}{v} \quad$ i.e., $\frac{1}{f}=\frac{1}{-20}+\frac{1}{-80}=\frac{-4-1}{80}=\frac{-5}{80}$

$$
\therefore \quad f=\frac{-80}{5}=-16 \mathrm{~cm}
$$

(iii) The radius of curvature of the mirror is
(a) -16 cm (b) -14 cm (c) -30 cm (d) -32 cm

Consider the case, in which a mirror forms a real image of height 4 cm of an object of height 1 cm placed 20 cm away from the mirror.

Radius of curvature, $R=2 f$

$$
=-2(16)=-32 \mathrm{~cm} .
$$

(iv) The magnification of the image is
(a) 3 (b) -6 (c) -4 (d) 8

$$
m=\frac{-v}{u}=-\frac{-80}{-20}=-4
$$

(v) At what distance must an object be placed from mirror in order that a real image double its size may be obtained?
(a) -24 cm (b) 32 cm (c) -40 cm (d) 45 cm

$$
\begin{aligned}
m=-\frac{v}{u}=-2 & \Rightarrow v=2 u \\
\text { So, } \frac{1}{v}+\frac{1}{u}=\frac{1}{f} & \Rightarrow \frac{1}{u}+\frac{1}{2 u}=\frac{1}{f} \\
& \Rightarrow u=\frac{3}{2} f=\frac{3}{2}(-16)=-24 \mathrm{~cm}
\end{aligned}
$$

